Cargando…
Full Bayesian identification of linear dynamic systems using stable kernels
System identification learns mathematical models of dynamic systems starting from input–output data. Despite its long history, such research area is still extremely active. New challenges are posed by identification of complex physical processes given by the interconnection of dynamic systems. Examp...
Autores principales: | Pillonetto, G., Ljung, L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10161125/ https://www.ncbi.nlm.nih.gov/pubmed/37094150 http://dx.doi.org/10.1073/pnas.2218197120 |
Ejemplares similares
-
A Bayesian switching linear dynamical system for estimating seizure chronotypes
por: Wang, Emily T., et al.
Publicado: (2022) -
Bayesian interpolation with deep linear networks
por: Hanin, Boris, et al.
Publicado: (2023) -
Shared kernel Bayesian screening
por: Lock, Eric F., et al.
Publicado: (2015) -
Perturbatively Stable Resummed Small x Evolution Kernels
por: Altarelli, Guido, et al.
Publicado: (2005) -
Bayesian analysis of linear models
por: Broemeling
Publicado: (2017)