Cargando…
A Mass Spectrometry-Machine Learning Approach for Detecting Volatile Organic Compound Emissions for Early Fire Detection
[Image: see text] Mass spectrometry in parallel with real-time machine learning techniques were paired in a novel application to detect and identify chemically specific, early indicators of fires and near-fire events involving a set of selected materials: Mylar, Teflon, and poly(methyl methacrylate)...
Autores principales: | Kingsley, Sarah, Xu, Zhaoyi, Jones, Brant, Saleh, Joseph, Orlando, Thomas M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10161216/ https://www.ncbi.nlm.nih.gov/pubmed/37079759 http://dx.doi.org/10.1021/jasms.2c00304 |
Ejemplares similares
-
Biogenic volatile organic compound emissions from vegetation fires
por: CICCIOLI, PAOLO, et al.
Publicado: (2014) -
Rapid and Direct
Assessment of Asphalt Volatile Organic
Compound Emission Based on Carbon Fiber Ionization Mass Spectrometry
por: Wang, Shanshan, et al.
Publicado: (2023) -
Hyphenated Mass Spectrometry versus Real-Time Mass Spectrometry Techniques for the Detection of Volatile Compounds from the Human Body
por: Gould, Oliver, et al.
Publicado: (2021) -
Methods to Detect Volatile Organic Compounds for Breath Biopsy Using Solid-Phase Microextraction and Gas Chromatography–Mass Spectrometry
por: Schulz, Eray, et al.
Publicado: (2023) -
Detection of Specific Volatile Organic Compounds in Tribolium castaneum (Herbst) by Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry
por: Han, Shaoyun, et al.
Publicado: (2023)