Cargando…
Machine learning for screening of at-risk, mild and moderate COPD patients at risk of FEV(1) decline: results from COPDGene and SPIROMICS
Purpose: The purpose of this study was to train and validate machine learning models for predicting rapid decline of forced expiratory volume in 1 s (FEV(1)) in individuals with a smoking history at-risk-for chronic obstructive pulmonary disease (COPD), Global Initiative for Chronic Obstructive Lung...
Autores principales: | Wang, Jennifer M., Labaki, Wassim W., Murray, Susan, Martinez, Fernando J., Curtis, Jeffrey L., Hoffman, Eric A., Ram, Sundaresh, Bell, Alexander J., Galban, Craig J., Han, MeiLan K., Hatt, Charles |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10161244/ https://www.ncbi.nlm.nih.gov/pubmed/37153221 http://dx.doi.org/10.3389/fphys.2023.1144192 |
Ejemplares similares
-
Association of thrombocytosis with COPD morbidity: the SPIROMICS and COPDGene cohorts
por: Fawzy, Ashraf, et al.
Publicado: (2018) -
Correcting Nonpathological Variation in Longitudinal Parametric Response Maps of CT Scans in COPD Subjects: SPIROMICS
por: Fernández-Baldera, Antonio, et al.
Publicado: (2017) -
CT-Based Commercial Software Applications: Improving Patient Care Through Accurate COPD Subtyping
por: Wang, Jennifer M, et al.
Publicado: (2022) -
Relationship between diffusion capacity and small airway abnormality in COPDGene
por: Criner, Rachel N., et al.
Publicado: (2019) -
Association of plasma mitochondrial DNA with COPD severity and progression in the SPIROMICS cohort
por: Zhang, William Z., et al.
Publicado: (2021)