Cargando…
MODILM: towards better complex diseases classification using a novel multi-omics data integration learning model
BACKGROUND: Accurately classifying complex diseases is crucial for diagnosis and personalized treatment. Integrating multi-omics data has been demonstrated to enhance the accuracy of analyzing and classifying complex diseases. This can be attributed to the highly correlated nature of the data with v...
Autores principales: | Zhong, Yating, Peng, Yuzhong, Lin, Yanmei, Chen, Dingjia, Zhang, Hao, Zheng, Wen, Chen, Yuanyuan, Wu, Changliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10161645/ https://www.ncbi.nlm.nih.gov/pubmed/37147619 http://dx.doi.org/10.1186/s12911-023-02173-9 |
Ejemplares similares
-
More Is Better: Recent Progress in Multi-Omics Data Integration Methods
por: Huang, Sijia, et al.
Publicado: (2017) -
Editorial: Integrative multi-modal, multi-omics analytics for the better understanding of metabolic diseases
por: Acharjee, Animesh, et al.
Publicado: (2023) -
A multi-omics data simulator for complex disease studies and its application to evaluate multi-omics data analysis methods for disease classification
por: Chung, Ren-Hua, et al.
Publicado: (2019) -
Integrative network fusion-based multi-omics study for biomarker identification and patient classification of rheumatoid arthritis
por: Ding, Zihe, et al.
Publicado: (2023) -
Omics and Multi-Omics in IBD: No Integration, No Breakthroughs
por: Fiocchi, Claudio
Publicado: (2023)