Cargando…
On the angular anisotropy of the randomly averaged magnetic neutron scattering cross section of nanoparticles
The magnetic small-angle neutron scattering (SANS) cross section of dilute ensembles of uniformly magnetized and randomly oriented Stoner–Wohlfarth particles is calculated using the Landau–Lifshitz equation. The focus of this study is on the angular anisotropy of the magnetic SANS signal as it can b...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10161771/ https://www.ncbi.nlm.nih.gov/pubmed/36913314 http://dx.doi.org/10.1107/S205225252300180X |
Sumario: | The magnetic small-angle neutron scattering (SANS) cross section of dilute ensembles of uniformly magnetized and randomly oriented Stoner–Wohlfarth particles is calculated using the Landau–Lifshitz equation. The focus of this study is on the angular anisotropy of the magnetic SANS signal as it can be seen on a two-dimensional position-sensitive detector. Depending on the symmetry of the magnetic anisotropy of the particles (e.g. uniaxial, cubic), an anisotropic magnetic SANS pattern may result, even in the remanent state or at the coercive field. The case of inhomogeneously magnetized particles and the effects of a particle-size distribution and interparticle correlations are also discussed. |
---|