Cargando…

Tolerance, taxonomic and phylogenetic studies of some bacterial isolates involved in bioremediation of crude oil polluted soil in the southern region of Nigeria

Indigenous bacteria play vital roles in the bioremediation of crude oil polluted soils. The effectiveness of the bioremediation process depends on the tolerance, characteristics and biodiversity of the bacteria isolates. Bacteria strains were isolated from crude-oil polluted sites in different locat...

Descripción completa

Detalles Bibliográficos
Autores principales: Omenna, Emmanuel Chukwuma, Omage, Kingsley, Ezaka, Emmanuel, Azeke, Marshall Arebojie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10161795/
https://www.ncbi.nlm.nih.gov/pubmed/37151690
http://dx.doi.org/10.1016/j.heliyon.2023.e15639
Descripción
Sumario:Indigenous bacteria play vital roles in the bioremediation of crude oil polluted soils. The effectiveness of the bioremediation process depends on the tolerance, characteristics and biodiversity of the bacteria isolates. Bacteria strains were isolated from crude-oil polluted sites in different locations in the southern region of Nigeria namely: Azikoro and Otukpoti (Bayelsa state); Ologbo and Benin (Edo State) and non-polluted soil was collected from Ibadan (Oyo state). Tolerance study was conducted for 96 h s. Isolation and characterization of the most effective isolate from each location was done using cultural, physico-chemical and molecular methods. The tolerance level of the isolates from the different oil-polluted soils and their comparative growth performance on crude oil supplemented media decreases in the order: Azikoro - Ologbo - Otukpoti - Benin. MATS analysis showed that cell surfaces of Azikoro, Ologbo and Otukpoti strains exhibited 58–63 % adhesion to n-hexadecane and are hydrophobic strains while Benin strain possess 38% adhesion to n-hexadecane and are hydrophilic. The cell surfaces of isolates from Azikoro, Ologbo and Otukpoti are highly Lewis-acidic while that from Benin is highly Lewis-basic. Isolates from Benin-3, Ologbo-1, and Otukpoti-1 were shown to be gram positive while that from Azikoro was gram negative. 16S rDNA fingerprinting confirmed the identities of the isolates as follows: Paenalcaligenes suwonesis with accession numbers NR-133804.1 from Azikoro spillage site (93.77%); Lactobacillus nagelii with accession number NR-158108.1 (91.30%) from Benin spillage site; Lactobacillus fermentum with accession number NR-104927.1 (96.70%) from Ologbo and Otukpoti spillage sites. Phylogenetic analysis putatively categorized the isolates from Otukpoti and Ologbo in close association belonging to same homology while Benin isolate is a subgroup. The characteristics and biodiversity of all the isolated bacteria from the regions possibly justifies their involvement in the bioremediation of petroleum hydrocarbons.