Cargando…
Applying machine learning classifiers to automate quality assessment of paediatric dynamic susceptibility contrast (DSC-) MRI data
OBJECTIVE: Investigate the performance of qualitative review (QR) for assessing dynamic susceptibility contrast (DSC-) MRI data quality in paediatric normal brain and develop an automated alternative to QR. METHODS: 1027 signal–time courses were assessed by Reviewer 1 using QR. 243 were additionally...
Autores principales: | Powell, Stephen J., Withey, Stephanie B., Sun, Yu, Grist, James T., Novak, Jan, MacPherson, Lesley, Abernethy, Laurence, Pizer, Barry, Grundy, Richard, Morgan, Paul S., Jaspan, Tim, Bailey, Simon, Mitra, Dipayan, Auer, Dorothee P., Avula, Shivaram, Arvanitis, Theodoros N., Peet, Andrew |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The British Institute of Radiology.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10161906/ https://www.ncbi.nlm.nih.gov/pubmed/36802769 http://dx.doi.org/10.1259/bjr.20201465 |
Ejemplares similares
-
Distinguishing between paediatric brain tumour types using multi-parametric magnetic resonance imaging and machine learning: A multi-site study
por: Grist, James T., et al.
Publicado: (2020) -
IMG-06. PREDICTING SURVIVAL FROM PERFUSION AND DIFFUSION MRI BY MACHINE LEARNING
por: Grist, James T, et al.
Publicado: (2020) -
Dynamic susceptibility-contrast magnetic resonance imaging with contrast agent leakage correction aids in predicting grade in pediatric brain tumours: a multicenter study
por: Withey, Stephanie B., et al.
Publicado: (2022) -
Combining multi-site magnetic resonance imaging with machine learning predicts survival in pediatric brain tumors
por: Grist, James T., et al.
Publicado: (2021) -
Classification of paediatric brain tumours by diffusion weighted imaging and machine learning
por: Novak, Jan, et al.
Publicado: (2021)