Cargando…
Predicting polypharmacy in half a million adults in the Iranian population: comparison of machine learning algorithms
BACKGROUND: Polypharmacy (PP) is increasingly common in Iran, and contributes to the substantial burden of drug-related morbidity, increasing the potential for drug interactions and potentially inappropriate medications. Machine learning algorithms (ML) can be employed as an alternative solution for...
Autores principales: | Seyedtabib, Maryam, Kamyari, Naser |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10161984/ https://www.ncbi.nlm.nih.gov/pubmed/37147615 http://dx.doi.org/10.1186/s12911-023-02177-5 |
Ejemplares similares
-
Correction to: Predicting polypharmacy in half a million adults in the Iranian population: comparison of machine learning algorithms
por: Seyedtabib, Maryam, et al.
Publicado: (2023) -
Zero-augmented beta-prime model for multilevel semi-continuous data: a Bayesian inference
por: Kamyari, Naser, et al.
Publicado: (2022) -
Mapping Drug Prescription, Polypharmacy, and Pharmaceutical Spending in Older Adults in Iran: A Multilevel Analysis Based on Claims Data
por: Kamyari, Naser, et al.
Publicado: (2021) -
"Saving" Half-A-Million
Publicado: (1921) -
The Spending of Half a Million of Money
Publicado: (1907)