Cargando…

Analyzing the sensitivity of quantitative 3D MRI of longitudinal relaxation at very low field in Gd-doped phantoms

PURPOSE: Recently, new MRI systems working at magnetic field below 10 mT (Very and Ultra Low Field regime) have been developed, showing improved T(1)-contrast in projected 2D maps (i.e. images without slice selection). Moving from projected 2D to 3D maps is not trivial due to the low SNR of such dev...

Descripción completa

Detalles Bibliográficos
Autores principales: de Iure, Danilo, Conti, Allegra, Galante, Angelo, Spadone, Sara, Hilschenz, Ingo, Caulo, Massimo, Sensi, Stefano, Del Gratta, Cosimo, Della Penna, Stefania
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10162526/
https://www.ncbi.nlm.nih.gov/pubmed/37146058
http://dx.doi.org/10.1371/journal.pone.0285391
Descripción
Sumario:PURPOSE: Recently, new MRI systems working at magnetic field below 10 mT (Very and Ultra Low Field regime) have been developed, showing improved T(1)-contrast in projected 2D maps (i.e. images without slice selection). Moving from projected 2D to 3D maps is not trivial due to the low SNR of such devices. This work aimed to demonstrate the ability and the sensitivity of a VLF-MRI scanner operating at 8.9 mT in quantitatively obtaining 3D longitudinal relaxation rate (R(1)) maps and distinguishing between voxels intensities. We used phantoms consisting of vessels doped with different Gadolinium (Gd)-based Contrast Agent (CA) concentrations, providing a set of various R(1) values. As CA, we used a commercial compound (MultiHance®, gadobenate dimeglumine) routinely used in clinical MRI. METHODS: 3D R(1) maps and T(1)-weighted MR images were analysed to identify each vessel. R(1) maps were further processed by an automatic clustering analysis to evaluate the sensitivity at the single-voxel level. Results obtained at 8.9 mT were compared with commercial scanners operating at 0.2 T, 1.5 T, and 3 T. RESULTS: VLF R(1) maps offered a higher sensitivity in distinguishing the different CA concentrations and an improved contrast compared to higher fields. Moreover, the high sensitivity of 3D quantitative VLF-MRI allowed an effective clustering of the 3D map values, assessing their reliability at the single voxel level. Conversely, in all fields, T(1)-weighted images were less reliable, even at higher CA concentrations. CONCLUSION: In summary, with few excitations and an isotropic voxel size of 3 mm, VLF-MRI 3D quantitative mapping showed a sensitivity better than 2.7 s(-1) corresponding to a concentration difference of 0.17 mM of MultiHance in copper sulfate doped water, and improved contrast compared to higher fields. Based on these results, future studies should characterize R(1) contrast at VLF, also with other CA, in the living tissues.