Cargando…
Better null models for assessing predictive accuracy of disease models
Null models provide a critical baseline for the evaluation of predictive disease models. Many studies consider only the grand mean null model (i.e. R(2)) when evaluating the predictive ability of a model, which is insufficient to convey the predictive power of a model. We evaluated ten null models f...
Autores principales: | Keyel, Alexander C., Kilpatrick, A. Marm |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10162537/ https://www.ncbi.nlm.nih.gov/pubmed/37146010 http://dx.doi.org/10.1371/journal.pone.0285215 |
Ejemplares similares
-
Hybrid XGBoost model with hyperparameter tuning for prediction of liver disease with better accuracy
por: Dalal, Surjeet, et al.
Publicado: (2022) -
Patterns of West Nile Virus in the Northeastern United States Using Negative Binomial and Mechanistic Trait‐Based Models
por: Keyel, Alexander C.
Publicado: (2023) -
Bushmeat Hunting, Deforestation, and Prediction of Zoonotic Disease
por: Wolfe, Nathan D., et al.
Publicado: (2005) -
Early Prediction of Alzheimer’s Disease Using Null Longitudinal Model-Based Classifiers
por: Gavidia-Bovadilla, Giovana, et al.
Publicado: (2017) -
Advanced machine learning model for better prediction accuracy of soil temperature at different depths
por: Alizamir, Meysam, et al.
Publicado: (2020)