Cargando…
Embo: a Python package for empirical data analysis using the Information Bottleneck
We present embo, a Python package to analyze empirical data using the Information Bottleneck (IB) method and its variants, such as the Deterministic Information Bottleneck (DIB). Given two random variables X and Y, the IB finds the stochastic mapping M of X that encodes the most information about Y,...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10162586/ https://www.ncbi.nlm.nih.gov/pubmed/37153754 http://dx.doi.org/10.5334/jors.322 |
_version_ | 1785037724996075520 |
---|---|
author | Piasini, Eugenio Filipowicz, Alexandre L. S. Levine, Jonathan Gold, Joshua I |
author_facet | Piasini, Eugenio Filipowicz, Alexandre L. S. Levine, Jonathan Gold, Joshua I |
author_sort | Piasini, Eugenio |
collection | PubMed |
description | We present embo, a Python package to analyze empirical data using the Information Bottleneck (IB) method and its variants, such as the Deterministic Information Bottleneck (DIB). Given two random variables X and Y, the IB finds the stochastic mapping M of X that encodes the most information about Y, subject to a constraint on the information that M is allowed to retain about X. Despite the popularity of the IB, an accessible implementation of the reference algorithm oriented towards ease of use on empirical data was missing. Embo is optimized for the common case of discrete, low-dimensional data. Embo is fast, provides a standard data-processing pipeline, offers a parallel implementation of key computational steps, and includes reasonable defaults for the method parameters. Embo is broadly applicable to different problem domains, as it can be employed with any dataset consisting in joint observations of two discrete variables. It is available from the Python Package Index (PyPI), Zenodo and GitLab. |
format | Online Article Text |
id | pubmed-10162586 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
record_format | MEDLINE/PubMed |
spelling | pubmed-101625862023-05-05 Embo: a Python package for empirical data analysis using the Information Bottleneck Piasini, Eugenio Filipowicz, Alexandre L. S. Levine, Jonathan Gold, Joshua I J Open Res Softw Article We present embo, a Python package to analyze empirical data using the Information Bottleneck (IB) method and its variants, such as the Deterministic Information Bottleneck (DIB). Given two random variables X and Y, the IB finds the stochastic mapping M of X that encodes the most information about Y, subject to a constraint on the information that M is allowed to retain about X. Despite the popularity of the IB, an accessible implementation of the reference algorithm oriented towards ease of use on empirical data was missing. Embo is optimized for the common case of discrete, low-dimensional data. Embo is fast, provides a standard data-processing pipeline, offers a parallel implementation of key computational steps, and includes reasonable defaults for the method parameters. Embo is broadly applicable to different problem domains, as it can be employed with any dataset consisting in joint observations of two discrete variables. It is available from the Python Package Index (PyPI), Zenodo and GitLab. 2021 2021-05-31 /pmc/articles/PMC10162586/ /pubmed/37153754 http://dx.doi.org/10.5334/jors.322 Text en https://creativecommons.org/licenses/by/3.0/Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/3.0/) that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal. |
spellingShingle | Article Piasini, Eugenio Filipowicz, Alexandre L. S. Levine, Jonathan Gold, Joshua I Embo: a Python package for empirical data analysis using the Information Bottleneck |
title | Embo: a Python package for empirical data analysis using the Information Bottleneck |
title_full | Embo: a Python package for empirical data analysis using the Information Bottleneck |
title_fullStr | Embo: a Python package for empirical data analysis using the Information Bottleneck |
title_full_unstemmed | Embo: a Python package for empirical data analysis using the Information Bottleneck |
title_short | Embo: a Python package for empirical data analysis using the Information Bottleneck |
title_sort | embo: a python package for empirical data analysis using the information bottleneck |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10162586/ https://www.ncbi.nlm.nih.gov/pubmed/37153754 http://dx.doi.org/10.5334/jors.322 |
work_keys_str_mv | AT piasinieugenio emboapythonpackageforempiricaldataanalysisusingtheinformationbottleneck AT filipowiczalexandrels emboapythonpackageforempiricaldataanalysisusingtheinformationbottleneck AT levinejonathan emboapythonpackageforempiricaldataanalysisusingtheinformationbottleneck AT goldjoshuai emboapythonpackageforempiricaldataanalysisusingtheinformationbottleneck |