Cargando…

Embo: a Python package for empirical data analysis using the Information Bottleneck

We present embo, a Python package to analyze empirical data using the Information Bottleneck (IB) method and its variants, such as the Deterministic Information Bottleneck (DIB). Given two random variables X and Y, the IB finds the stochastic mapping M of X that encodes the most information about Y,...

Descripción completa

Detalles Bibliográficos
Autores principales: Piasini, Eugenio, Filipowicz, Alexandre L. S., Levine, Jonathan, Gold, Joshua I
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10162586/
https://www.ncbi.nlm.nih.gov/pubmed/37153754
http://dx.doi.org/10.5334/jors.322
_version_ 1785037724996075520
author Piasini, Eugenio
Filipowicz, Alexandre L. S.
Levine, Jonathan
Gold, Joshua I
author_facet Piasini, Eugenio
Filipowicz, Alexandre L. S.
Levine, Jonathan
Gold, Joshua I
author_sort Piasini, Eugenio
collection PubMed
description We present embo, a Python package to analyze empirical data using the Information Bottleneck (IB) method and its variants, such as the Deterministic Information Bottleneck (DIB). Given two random variables X and Y, the IB finds the stochastic mapping M of X that encodes the most information about Y, subject to a constraint on the information that M is allowed to retain about X. Despite the popularity of the IB, an accessible implementation of the reference algorithm oriented towards ease of use on empirical data was missing. Embo is optimized for the common case of discrete, low-dimensional data. Embo is fast, provides a standard data-processing pipeline, offers a parallel implementation of key computational steps, and includes reasonable defaults for the method parameters. Embo is broadly applicable to different problem domains, as it can be employed with any dataset consisting in joint observations of two discrete variables. It is available from the Python Package Index (PyPI), Zenodo and GitLab.
format Online
Article
Text
id pubmed-10162586
institution National Center for Biotechnology Information
language English
publishDate 2021
record_format MEDLINE/PubMed
spelling pubmed-101625862023-05-05 Embo: a Python package for empirical data analysis using the Information Bottleneck Piasini, Eugenio Filipowicz, Alexandre L. S. Levine, Jonathan Gold, Joshua I J Open Res Softw Article We present embo, a Python package to analyze empirical data using the Information Bottleneck (IB) method and its variants, such as the Deterministic Information Bottleneck (DIB). Given two random variables X and Y, the IB finds the stochastic mapping M of X that encodes the most information about Y, subject to a constraint on the information that M is allowed to retain about X. Despite the popularity of the IB, an accessible implementation of the reference algorithm oriented towards ease of use on empirical data was missing. Embo is optimized for the common case of discrete, low-dimensional data. Embo is fast, provides a standard data-processing pipeline, offers a parallel implementation of key computational steps, and includes reasonable defaults for the method parameters. Embo is broadly applicable to different problem domains, as it can be employed with any dataset consisting in joint observations of two discrete variables. It is available from the Python Package Index (PyPI), Zenodo and GitLab. 2021 2021-05-31 /pmc/articles/PMC10162586/ /pubmed/37153754 http://dx.doi.org/10.5334/jors.322 Text en https://creativecommons.org/licenses/by/3.0/Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/3.0/) that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
spellingShingle Article
Piasini, Eugenio
Filipowicz, Alexandre L. S.
Levine, Jonathan
Gold, Joshua I
Embo: a Python package for empirical data analysis using the Information Bottleneck
title Embo: a Python package for empirical data analysis using the Information Bottleneck
title_full Embo: a Python package for empirical data analysis using the Information Bottleneck
title_fullStr Embo: a Python package for empirical data analysis using the Information Bottleneck
title_full_unstemmed Embo: a Python package for empirical data analysis using the Information Bottleneck
title_short Embo: a Python package for empirical data analysis using the Information Bottleneck
title_sort embo: a python package for empirical data analysis using the information bottleneck
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10162586/
https://www.ncbi.nlm.nih.gov/pubmed/37153754
http://dx.doi.org/10.5334/jors.322
work_keys_str_mv AT piasinieugenio emboapythonpackageforempiricaldataanalysisusingtheinformationbottleneck
AT filipowiczalexandrels emboapythonpackageforempiricaldataanalysisusingtheinformationbottleneck
AT levinejonathan emboapythonpackageforempiricaldataanalysisusingtheinformationbottleneck
AT goldjoshuai emboapythonpackageforempiricaldataanalysisusingtheinformationbottleneck