Cargando…
Inference in conditioned dynamics through causality restoration
Estimating observables from conditioned dynamics is typically computationally hard. While obtaining independent samples efficiently from unconditioned dynamics is usually feasible, most of them do not satisfy the imposed conditions and must be discarded. On the other hand, conditioning breaks the ca...
Autores principales: | Braunstein, Alfredo, Catania, Giovanni, Dall’Asta, Luca, Mariani, Matteo, Muntoni, Anna Paola |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10163042/ https://www.ncbi.nlm.nih.gov/pubmed/37147382 http://dx.doi.org/10.1038/s41598-023-33770-3 |
Ejemplares similares
-
Epidemic mitigation by statistical inference from contact tracing data
por: Baker, Antoine, et al.
Publicado: (2021) -
A Bayesian generative neural network framework for epidemic inference problems
por: Biazzo, Indaco, et al.
Publicado: (2022) -
Statics and Dynamics of Selfish Interactions in Distributed Service Systems
por: Altarelli, Fabrizio, et al.
Publicado: (2015) -
Predicting epidemic evolution on contact networks from partial observations
por: Bindi, Jacopo, et al.
Publicado: (2017) -
Inference of causality in epidemics on temporal contact networks
por: Braunstein, Alfredo, et al.
Publicado: (2016)