Cargando…
Correlated product of experts for sparse Gaussian process regression
Gaussian processes (GPs) are an important tool in machine learning and statistics. However, off-the-shelf GP inference procedures are limited to datasets with several thousand data points because of their cubic computational complexity. For this reason, many sparse GPs techniques have been developed...
Autores principales: | Schürch, Manuel, Azzimonti, Dario, Benavoli, Alessio, Zaffalon, Marco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10163145/ https://www.ncbi.nlm.nih.gov/pubmed/37162796 http://dx.doi.org/10.1007/s10994-022-06297-3 |
Ejemplares similares
-
Heteroscedastic sparse Gaussian process regression-based stochastic material model for plastic structural analysis
por: Chen, Baixi, et al.
Publicado: (2022) -
Regression with Gaussian Processes
por: Kalia, Saarik
Publicado: (2016) -
Sparse Gaussian Process Regression-Based Machine Learned
First-Principles Force-Fields for Saturated, Olefinic, and Aromatic
Hydrocarbons
por: Ha, Miran, et al.
Publicado: (2022) -
Gaussian Process Regression for Materials and Molecules
por: Deringer, Volker L., et al.
Publicado: (2021) -
Real-Time Remaining Useful Life Prediction of Cutting Tools Using Sparse Augmented Lagrangian Analysis and Gaussian Process Regression
por: Qin, Xiao, et al.
Publicado: (2022)