Cargando…

Denoising diffusion probabilistic models for 3D medical image generation

Recent advances in computer vision have shown promising results in image generation. Diffusion probabilistic models have generated realistic images from textual input, as demonstrated by DALL-E 2, Imagen, and Stable Diffusion. However, their use in medicine, where imaging data typically comprises th...

Descripción completa

Detalles Bibliográficos
Autores principales: Khader, Firas, Müller-Franzes, Gustav, Tayebi Arasteh, Soroosh, Han, Tianyu, Haarburger, Christoph, Schulze-Hagen, Maximilian, Schad, Philipp, Engelhardt, Sandy, Baeßler, Bettina, Foersch, Sebastian, Stegmaier, Johannes, Kuhl, Christiane, Nebelung, Sven, Kather, Jakob Nikolas, Truhn, Daniel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10163245/
https://www.ncbi.nlm.nih.gov/pubmed/37147413
http://dx.doi.org/10.1038/s41598-023-34341-2
_version_ 1785037846172663808
author Khader, Firas
Müller-Franzes, Gustav
Tayebi Arasteh, Soroosh
Han, Tianyu
Haarburger, Christoph
Schulze-Hagen, Maximilian
Schad, Philipp
Engelhardt, Sandy
Baeßler, Bettina
Foersch, Sebastian
Stegmaier, Johannes
Kuhl, Christiane
Nebelung, Sven
Kather, Jakob Nikolas
Truhn, Daniel
author_facet Khader, Firas
Müller-Franzes, Gustav
Tayebi Arasteh, Soroosh
Han, Tianyu
Haarburger, Christoph
Schulze-Hagen, Maximilian
Schad, Philipp
Engelhardt, Sandy
Baeßler, Bettina
Foersch, Sebastian
Stegmaier, Johannes
Kuhl, Christiane
Nebelung, Sven
Kather, Jakob Nikolas
Truhn, Daniel
author_sort Khader, Firas
collection PubMed
description Recent advances in computer vision have shown promising results in image generation. Diffusion probabilistic models have generated realistic images from textual input, as demonstrated by DALL-E 2, Imagen, and Stable Diffusion. However, their use in medicine, where imaging data typically comprises three-dimensional volumes, has not been systematically evaluated. Synthetic images may play a crucial role in privacy-preserving artificial intelligence and can also be used to augment small datasets. We show that diffusion probabilistic models can synthesize high-quality medical data for magnetic resonance imaging (MRI) and computed tomography (CT). For quantitative evaluation, two radiologists rated the quality of the synthesized images regarding "realistic image appearance", "anatomical correctness", and "consistency between slices". Furthermore, we demonstrate that synthetic images can be used in self-supervised pre-training and improve the performance of breast segmentation models when data is scarce (Dice scores, 0.91 [without synthetic data], 0.95 [with synthetic data]).
format Online
Article
Text
id pubmed-10163245
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-101632452023-05-07 Denoising diffusion probabilistic models for 3D medical image generation Khader, Firas Müller-Franzes, Gustav Tayebi Arasteh, Soroosh Han, Tianyu Haarburger, Christoph Schulze-Hagen, Maximilian Schad, Philipp Engelhardt, Sandy Baeßler, Bettina Foersch, Sebastian Stegmaier, Johannes Kuhl, Christiane Nebelung, Sven Kather, Jakob Nikolas Truhn, Daniel Sci Rep Article Recent advances in computer vision have shown promising results in image generation. Diffusion probabilistic models have generated realistic images from textual input, as demonstrated by DALL-E 2, Imagen, and Stable Diffusion. However, their use in medicine, where imaging data typically comprises three-dimensional volumes, has not been systematically evaluated. Synthetic images may play a crucial role in privacy-preserving artificial intelligence and can also be used to augment small datasets. We show that diffusion probabilistic models can synthesize high-quality medical data for magnetic resonance imaging (MRI) and computed tomography (CT). For quantitative evaluation, two radiologists rated the quality of the synthesized images regarding "realistic image appearance", "anatomical correctness", and "consistency between slices". Furthermore, we demonstrate that synthetic images can be used in self-supervised pre-training and improve the performance of breast segmentation models when data is scarce (Dice scores, 0.91 [without synthetic data], 0.95 [with synthetic data]). Nature Publishing Group UK 2023-05-05 /pmc/articles/PMC10163245/ /pubmed/37147413 http://dx.doi.org/10.1038/s41598-023-34341-2 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Khader, Firas
Müller-Franzes, Gustav
Tayebi Arasteh, Soroosh
Han, Tianyu
Haarburger, Christoph
Schulze-Hagen, Maximilian
Schad, Philipp
Engelhardt, Sandy
Baeßler, Bettina
Foersch, Sebastian
Stegmaier, Johannes
Kuhl, Christiane
Nebelung, Sven
Kather, Jakob Nikolas
Truhn, Daniel
Denoising diffusion probabilistic models for 3D medical image generation
title Denoising diffusion probabilistic models for 3D medical image generation
title_full Denoising diffusion probabilistic models for 3D medical image generation
title_fullStr Denoising diffusion probabilistic models for 3D medical image generation
title_full_unstemmed Denoising diffusion probabilistic models for 3D medical image generation
title_short Denoising diffusion probabilistic models for 3D medical image generation
title_sort denoising diffusion probabilistic models for 3d medical image generation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10163245/
https://www.ncbi.nlm.nih.gov/pubmed/37147413
http://dx.doi.org/10.1038/s41598-023-34341-2
work_keys_str_mv AT khaderfiras denoisingdiffusionprobabilisticmodelsfor3dmedicalimagegeneration
AT mullerfranzesgustav denoisingdiffusionprobabilisticmodelsfor3dmedicalimagegeneration
AT tayebiarastehsoroosh denoisingdiffusionprobabilisticmodelsfor3dmedicalimagegeneration
AT hantianyu denoisingdiffusionprobabilisticmodelsfor3dmedicalimagegeneration
AT haarburgerchristoph denoisingdiffusionprobabilisticmodelsfor3dmedicalimagegeneration
AT schulzehagenmaximilian denoisingdiffusionprobabilisticmodelsfor3dmedicalimagegeneration
AT schadphilipp denoisingdiffusionprobabilisticmodelsfor3dmedicalimagegeneration
AT engelhardtsandy denoisingdiffusionprobabilisticmodelsfor3dmedicalimagegeneration
AT baeßlerbettina denoisingdiffusionprobabilisticmodelsfor3dmedicalimagegeneration
AT foerschsebastian denoisingdiffusionprobabilisticmodelsfor3dmedicalimagegeneration
AT stegmaierjohannes denoisingdiffusionprobabilisticmodelsfor3dmedicalimagegeneration
AT kuhlchristiane denoisingdiffusionprobabilisticmodelsfor3dmedicalimagegeneration
AT nebelungsven denoisingdiffusionprobabilisticmodelsfor3dmedicalimagegeneration
AT katherjakobnikolas denoisingdiffusionprobabilisticmodelsfor3dmedicalimagegeneration
AT truhndaniel denoisingdiffusionprobabilisticmodelsfor3dmedicalimagegeneration