Cargando…
Denoising diffusion probabilistic models for 3D medical image generation
Recent advances in computer vision have shown promising results in image generation. Diffusion probabilistic models have generated realistic images from textual input, as demonstrated by DALL-E 2, Imagen, and Stable Diffusion. However, their use in medicine, where imaging data typically comprises th...
Autores principales: | Khader, Firas, Müller-Franzes, Gustav, Tayebi Arasteh, Soroosh, Han, Tianyu, Haarburger, Christoph, Schulze-Hagen, Maximilian, Schad, Philipp, Engelhardt, Sandy, Baeßler, Bettina, Foersch, Sebastian, Stegmaier, Johannes, Kuhl, Christiane, Nebelung, Sven, Kather, Jakob Nikolas, Truhn, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10163245/ https://www.ncbi.nlm.nih.gov/pubmed/37147413 http://dx.doi.org/10.1038/s41598-023-34341-2 |
Ejemplares similares
-
A multimodal comparison of latent denoising diffusion probabilistic models and generative adversarial networks for medical image synthesis
por: Müller-Franzes, Gustav, et al.
Publicado: (2023) -
Medical transformer for multimodal survival prediction in intensive care: integration of imaging and non-imaging data
por: Khader, Firas, et al.
Publicado: (2023) -
Collaborative training of medical artificial intelligence models with non-uniform labels
por: Tayebi Arasteh, Soroosh, et al.
Publicado: (2023) -
Fibroglandular tissue segmentation in breast MRI using vision transformers: a multi-institutional evaluation
por: Müller-Franzes, Gustav, et al.
Publicado: (2023) -
Reliability as a Precondition for Trust—Segmentation Reliability Analysis of Radiomic Features Improves Survival Prediction
por: Müller-Franzes, Gustav, et al.
Publicado: (2022)