Cargando…
An integrated clustering and BERT framework for improved topic modeling
Topic modelling is a machine learning technique that is extensively used in Natural Language Processing (NLP) applications to infer topics within unstructured textual data. Latent Dirichlet Allocation (LDA) is one of the most used topic modeling techniques that can automatically detect topics from a...
Autores principales: | George, Lijimol, Sumathy, P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Nature Singapore
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10163298/ https://www.ncbi.nlm.nih.gov/pubmed/37256029 http://dx.doi.org/10.1007/s41870-023-01268-w |
Ejemplares similares
-
Unmasking the Twitter Discourses on Masks During the COVID-19 Pandemic: User Cluster–Based BERT Topic Modeling Approach
por: Xu, Weiai Wayne, et al.
Publicado: (2022) -
The performance of BERT as data representation of text clustering
por: Subakti, Alvin, et al.
Publicado: (2022) -
To BERT or Not to BERT Dealing with Possible BERT Failures in an Entailment Task
por: Fialho, Pedro, et al.
Publicado: (2020) -
A BERT Framework to Sentiment Analysis of Tweets
por: Bello, Abayomi, et al.
Publicado: (2023) -
ParsBERT topic modeling of Persian scientific articles about COVID-19
por: Dehghani, Mohammad, et al.
Publicado: (2023)