Cargando…
Quantifying the impact of unmeasured confounding in observational studies with the E value
The E value method deals with unmeasured confounding, a key source of bias in observational studies. The E value method is described and its use is shown in a worked example of a meta-analysis examining the association between the use of antidepressants in pregnancy and the risk of miscarriage.
Autores principales: | Gaster, Tobias, Eggertsen, Christine Marie, Støvring, Henrik, Ehrenstein, Vera, Petersen, Irene |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10163534/ https://www.ncbi.nlm.nih.gov/pubmed/37159620 http://dx.doi.org/10.1136/bmjmed-2022-000366 |
Ejemplares similares
-
Assessing Techniques for Quantifying the Impact of Bias Due to an Unmeasured Confounder: An Applied Example
por: Barberio, Julie, et al.
Publicado: (2021) -
Adjustment for unmeasured confounding through informative priors for the confounder-outcome relation
por: Groenwold, Rolf H. H., et al.
Publicado: (2018) -
A new method to address unmeasured confounding of mortality in observational studies
por: Tannen, Richard, et al.
Publicado: (2016) -
Sensitivity Analysis for Unmeasured Confounding in Meta-Analyses
por: Mathur, Maya B., et al.
Publicado: (2019) -
USE OF EXPOSURE CROSSOVER DESIGN TO CONTROL FOR UNMEASURED BASELINE CONFOUNDING IN OBSERVATIONAL STUDIES
por: Han, Ling, et al.
Publicado: (2019)