Cargando…
A fully-automatic semi-supervised deep learning model for difficult airway assessment
BACKGROUND: Difficult airway conditions represent a substantial challenge for clinicians. Predicting such conditions is essential for subsequent treatment planning, but the reported diagnostic accuracies are still quite low. To overcome these challenges, we developed a rapid, non-invasive, cost-effe...
Autores principales: | Wang, Guangzhi, Li, Chenxi, Tang, Fudong, Wang, Yangyang, Wu, Su, Zhi, Hui, Zhang, Fan, Wang, Meiyun, Zhang, Jiaqiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10163620/ https://www.ncbi.nlm.nih.gov/pubmed/37159696 http://dx.doi.org/10.1016/j.heliyon.2023.e15629 |
Ejemplares similares
-
A semi-supervised deep-learning approach for automatic crystal structure classification
por: Lolla, Satvik, et al.
Publicado: (2022) -
Building One-Shot Semi-Supervised (BOSS) Learning Up to Fully Supervised Performance
por: Smith, Leslie N., et al.
Publicado: (2022) -
A fully automatic deep learning system for COVID-19 diagnostic and prognostic analysis
por: Wang, Shuo, et al.
Publicado: (2020) -
scSemiAE: a deep model with semi-supervised learning for single-cell transcriptomics
por: Dong, Jiayi, et al.
Publicado: (2022) -
Graph-Based Self-Training for Semi-Supervised Deep Similarity Learning
por: Wang, Yifan, et al.
Publicado: (2023)