Cargando…
Semi-supervised learning improves regulatory sequence prediction with unlabeled sequences
MOTIVATION: Genome-wide association studies have systematically identified thousands of single nucleotide polymorphisms (SNPs) associated with complex genetic diseases. However, the majority of those SNPs were found in non-coding genomic regions, preventing the understanding of the underlying causal...
Autor principal: | Mourad, Raphaël |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10163727/ https://www.ncbi.nlm.nih.gov/pubmed/37147561 http://dx.doi.org/10.1186/s12859-023-05303-2 |
Ejemplares similares
-
Semi-supervised prediction of protein interaction sites from unlabeled sample information
por: Wang, Ye, et al.
Publicado: (2019) -
Model performance and interpretability of semi-supervised generative adversarial networks to predict oncogenic variants with unlabeled data
por: Ren, Zilin, et al.
Publicado: (2023) -
Weakly supervised classification of aortic valve malformations using unlabeled cardiac MRI sequences
por: Fries, Jason A., et al.
Publicado: (2019) -
Correction: Model performance and interpretability of semi-supervised generative adversarial networks to predict oncogenic variants with unlabeled data
por: Ren, Zilin, et al.
Publicado: (2023) -
A Semi-Supervised Approach to Bearing Fault Diagnosis under Variable Conditions towards Imbalanced Unlabeled Data
por: Chen, Xinan, et al.
Publicado: (2018)