Cargando…
Detecting influential nodes with topological structure via Graph Neural Network approach in social networks
Detecting influential nodes in complex social networks is crucial due to the enormous amount of data and the constantly changing behavior of existing topologies. Centrality-based and machine-learning approaches focus mostly on node topologies or feature values in their evaluation of nodes’ relevance...
Autores principales: | Bhattacharya, Riju, Nagwani, Naresh Kumar, Tripathi, Sarsij |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Nature Singapore
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10163927/ https://www.ncbi.nlm.nih.gov/pubmed/37256031 http://dx.doi.org/10.1007/s41870-023-01271-1 |
Ejemplares similares
-
A graph-traversal approach to identify influential nodes in a network
por: Liu, Yan, et al.
Publicado: (2021) -
Node Classification in Complex Social Graphs via Knowledge-Graph Embeddings and Convolutional Neural Network
por: Molokwu, Bonaventure C., et al.
Publicado: (2020) -
Comprehensive influence of topological location and neighbor information on identifying influential nodes in complex networks
por: Wang, Xiaohua, et al.
Publicado: (2021) -
Locating influential nodes in complex networks
por: Malliaros, Fragkiskos D., et al.
Publicado: (2016) -
Influential Nodes Identification in Complex Networks via Information Entropy
por: Guo, Chungu, et al.
Publicado: (2020)