Cargando…
Self-adaptive moth flame optimizer combined with crossover operator and Fibonacci search strategy for COVID-19 CT image segmentation
The COVID-19 is one of the most significant obstacles that humanity is now facing. The use of computed tomography (CT) images is one method that can be utilized to recognize COVID-19 in early stage. In this study, an upgraded variant of Moth flame optimization algorithm (Es-MFO) is presented by cons...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10163947/ https://www.ncbi.nlm.nih.gov/pubmed/37193000 http://dx.doi.org/10.1016/j.eswa.2023.120367 |
Sumario: | The COVID-19 is one of the most significant obstacles that humanity is now facing. The use of computed tomography (CT) images is one method that can be utilized to recognize COVID-19 in early stage. In this study, an upgraded variant of Moth flame optimization algorithm (Es-MFO) is presented by considering a nonlinear self-adaptive parameter and a mathematical principle based on the Fibonacci approach method to achieve a higher level of accuracy in the classification of COVID-19 CT images. The proposed Es-MFO algorithm is evaluated using nineteen different basic benchmark functions, thirty and fifty dimensional IEEE CEC'2017 test functions, and compared the proficiency with a variety of other fundamental optimization techniques as well as MFO variants. Moreover, the suggested Es-MFO algorithm's robustness and durability has been evaluated with tests including the Friedman rank test and the Wilcoxon rank test, as well as a convergence analysis and a diversity analysis. Furthermore, the proposed Es-MFO algorithm resolves three CEC2020 engineering design problems to examine the problem-solving ability of the proposed method. The proposed Es-MFO algorithm is then used to solve the COVID-19 CT image segmentation problem using multi-level thresholding with the help of Otsu’s method. Comparison results of the suggested Es-MFO with basic and MFO variants proved the superiority of the newly developed algorithm. |
---|