Cargando…
Assessing the effects of hyperparameters on knowledge graph embedding quality
Embedding knowledge graphs into low-dimensional spaces is a popular method for applying approaches, such as link prediction or node classification, to these databases. This embedding process is very costly in terms of both computational time and space. Part of the reason for this is the optimisation...
Autores principales: | Lloyd, Oliver, Liu, Yi, R. Gaunt, Tom |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10164002/ https://www.ncbi.nlm.nih.gov/pubmed/37168524 http://dx.doi.org/10.1186/s40537-023-00732-5 |
Ejemplares similares
-
Knowledge Graph Embeddings for ICU readmission prediction
por: Carvalho, Ricardo M. S., et al.
Publicado: (2023) -
A type-augmented knowledge graph embedding framework for knowledge graph completion
por: He, Peng, et al.
Publicado: (2023) -
A Knowledge Graph Entity Disambiguation Method Based on Entity-Relationship Embedding and Graph Structure Embedding
por: Ma, Jiangtao, et al.
Publicado: (2021) -
Hyperbolic Knowledge Graph Embeddings for Knowledge Base Completion
por: Kolyvakis, Prodromos, et al.
Publicado: (2020) -
Embedding-Based Recommendations on Scholarly Knowledge Graphs
por: Nayyeri, Mojtaba, et al.
Publicado: (2020)