Cargando…
A novel microbe-drug association prediction model based on stacked autoencoder with multi-head attention mechanism
Microbes are intimately tied to the occurrence of various diseases that cause serious hazards to human health, and play an essential role in drug discovery, clinical application, and drug quality control. In this manuscript, we put forward a novel prediction model named MDASAE based on a stacked aut...
Autores principales: | Fan, Liu, Wang, Lei, Zhu, Xianyou |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10164153/ https://www.ncbi.nlm.nih.gov/pubmed/37149692 http://dx.doi.org/10.1038/s41598-023-34438-8 |
Ejemplares similares
-
GSAMDA: a computational model for predicting potential microbe–drug associations based on graph attention network and sparse autoencoder
por: Tan, Yaqin, et al.
Publicado: (2022) -
Multi-Gate Mixture-of-Experts Stacked Autoencoders
for Quality Prediction in Blast Furnace Ironmaking
por: Zhu, Hongyu, et al.
Publicado: (2022) -
Drug-protein interaction prediction via variational autoencoders and attention mechanisms
por: Zhang, Yue, et al.
Publicado: (2022) -
An Improved Stacked Autoencoder for Metabolomic Data Classification
por: Fan, Xiaojing, et al.
Publicado: (2021) -
SMALF: miRNA-disease associations prediction based on stacked autoencoder and XGBoost
por: Liu, Dayun, et al.
Publicado: (2021)