Cargando…
Generalising uncertainty improves accuracy and safety of deep learning analytics applied to oncology
Uncertainty estimation is crucial for understanding the reliability of deep learning (DL) predictions, and critical for deploying DL in the clinic. Differences between training and production datasets can lead to incorrect predictions with underestimated uncertainty. To investigate this pitfall, we...
Autores principales: | MacDonald, Samual, Foley, Helena, Yap, Melvyn, Johnston, Rebecca L., Steven, Kaiah, Koufariotis, Lambros T., Sharma, Sowmya, Wood, Scott, Addala, Venkateswar, Pearson, John V., Roosta, Fred, Waddell, Nicola, Kondrashova, Olga, Trzaskowski, Maciej |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10164181/ https://www.ncbi.nlm.nih.gov/pubmed/37149669 http://dx.doi.org/10.1038/s41598-023-31126-5 |
Ejemplares similares
-
Verifying explainability of a deep learning tissue classifier trained on RNA-seq data
por: Yap, Melvyn, et al.
Publicado: (2021) -
Performance of tumour microenvironment deconvolution methods in breast cancer using single-cell simulated bulk mixtures
por: Tran, Khoa A., et al.
Publicado: (2023) -
Efficient detection and monitoring of pediatric brain malignancies with liquid biopsy based on patient-specific somatic mutation screening
por: Kojic, Marija, et al.
Publicado: (2023) -
The oesophageal adenocarcinoma tumour immune microenvironment dictates outcomes with different modalities of neoadjuvant therapy – results from the AGITG DOCTOR trial and the cancer evolution biobank
por: Lonie, James M., et al.
Publicado: (2023) -
Generalisation effects of predictive uncertainty estimation in deep learning for digital pathology
por: Pocevičiūtė, Milda, et al.
Publicado: (2022)