Cargando…

Monitoring parameter change for bivariate time series models of counts

In this study, we consider an online monitoring procedure to detect a parameter change for bivariate time series of counts, following bivariate integer-valued generalized autoregressive heteroscedastic (BIGARCH) and autoregressive (BINAR) models. To handle this problem, we employ the cumulative sum...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Sangyeol, Kim, Dongwon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Nature Singapore 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10164370/
https://www.ncbi.nlm.nih.gov/pubmed/37361425
http://dx.doi.org/10.1007/s42952-023-00212-9
Descripción
Sumario:In this study, we consider an online monitoring procedure to detect a parameter change for bivariate time series of counts, following bivariate integer-valued generalized autoregressive heteroscedastic (BIGARCH) and autoregressive (BINAR) models. To handle this problem, we employ the cumulative sum (CUSUM) process constructed from the (standardized) residuals obtained from those models. To attain control limits, we develop limit theorems for the proposed monitoring process. A simulation study and real data analysis are conducted to affirm the validity of the proposed method.