Cargando…
Monitoring parameter change for bivariate time series models of counts
In this study, we consider an online monitoring procedure to detect a parameter change for bivariate time series of counts, following bivariate integer-valued generalized autoregressive heteroscedastic (BIGARCH) and autoregressive (BINAR) models. To handle this problem, we employ the cumulative sum...
Autores principales: | Lee, Sangyeol, Kim, Dongwon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Nature Singapore
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10164370/ https://www.ncbi.nlm.nih.gov/pubmed/37361425 http://dx.doi.org/10.1007/s42952-023-00212-9 |
Ejemplares similares
-
Monitoring Parameter Change for Time Series Models of Counts Based on Minimum Density Power Divergence Estimator
por: Lee, Sangyeol, et al.
Publicado: (2020) -
Robust Estimation for Bivariate Poisson INGARCH Models
por: Kim, Byungsoo, et al.
Publicado: (2021) -
Change Point Test for the Conditional Mean of Time Series of Counts Based on Support Vector Regression
por: Lee, Sangyeol, et al.
Publicado: (2021) -
Monitoring Volatility Change for Time Series Based on Support Vector Regression
por: Lee, Sangyeol, et al.
Publicado: (2020) -
Robust Change Point Test for General Integer-Valued Time Series Models Based on Density Power Divergence
por: Kim, Byungsoo, et al.
Publicado: (2020)