Cargando…

The temporal transcriptomic signature of cartilage formation

Chondrogenesis is a multistep process, in which cartilage progenitor cells generate a tissue with distinct structural and functional properties. Although several approaches to cartilage regeneration rely on the differentiation of implanted progenitor cells, the temporal transcriptomic landscape of i...

Descripción completa

Detalles Bibliográficos
Autores principales: Takács, Roland, Vágó, Judit, Póliska, Szilárd, Pushparaj, Peter Natesan, Ducza, László, Kovács, Patrik, Jin, Eun-Jung, Barrett-Jolley, Richard, Zákány, Róza, Matta, Csaba
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10164575/
https://www.ncbi.nlm.nih.gov/pubmed/36987858
http://dx.doi.org/10.1093/nar/gkad210
_version_ 1785038098695979008
author Takács, Roland
Vágó, Judit
Póliska, Szilárd
Pushparaj, Peter Natesan
Ducza, László
Kovács, Patrik
Jin, Eun-Jung
Barrett-Jolley, Richard
Zákány, Róza
Matta, Csaba
author_facet Takács, Roland
Vágó, Judit
Póliska, Szilárd
Pushparaj, Peter Natesan
Ducza, László
Kovács, Patrik
Jin, Eun-Jung
Barrett-Jolley, Richard
Zákány, Róza
Matta, Csaba
author_sort Takács, Roland
collection PubMed
description Chondrogenesis is a multistep process, in which cartilage progenitor cells generate a tissue with distinct structural and functional properties. Although several approaches to cartilage regeneration rely on the differentiation of implanted progenitor cells, the temporal transcriptomic landscape of in vitro chondrogenesis in different models has not been reported. Using RNA sequencing, we examined differences in gene expression patterns during cartilage formation in micromass cultures of embryonic limb bud-derived progenitors. Principal component and trajectory analyses revealed a progressively different and distinct transcriptome during chondrogenesis. Differentially expressed genes (DEGs), based on pairwise comparisons of samples from consecutive days were classified into clusters and analysed. We confirmed the involvement of the top DEGs in chondrogenic differentiation using pathway analysis and identified several chondrogenesis-associated transcription factors and collagen subtypes that were not previously linked to cartilage formation. Transient gene silencing of ATOH8 or EBF1 on day 0 attenuated chondrogenesis by deregulating the expression of key osteochondrogenic marker genes in micromass cultures. These results provide detailed insight into the molecular mechanism of chondrogenesis in primary micromass cultures and present a comprehensive dataset of the temporal transcriptomic landscape of chondrogenesis, which may serve as a platform for new molecular approaches in cartilage tissue engineering.
format Online
Article
Text
id pubmed-10164575
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-101645752023-05-08 The temporal transcriptomic signature of cartilage formation Takács, Roland Vágó, Judit Póliska, Szilárd Pushparaj, Peter Natesan Ducza, László Kovács, Patrik Jin, Eun-Jung Barrett-Jolley, Richard Zákány, Róza Matta, Csaba Nucleic Acids Res Data Resources and Analyses Chondrogenesis is a multistep process, in which cartilage progenitor cells generate a tissue with distinct structural and functional properties. Although several approaches to cartilage regeneration rely on the differentiation of implanted progenitor cells, the temporal transcriptomic landscape of in vitro chondrogenesis in different models has not been reported. Using RNA sequencing, we examined differences in gene expression patterns during cartilage formation in micromass cultures of embryonic limb bud-derived progenitors. Principal component and trajectory analyses revealed a progressively different and distinct transcriptome during chondrogenesis. Differentially expressed genes (DEGs), based on pairwise comparisons of samples from consecutive days were classified into clusters and analysed. We confirmed the involvement of the top DEGs in chondrogenic differentiation using pathway analysis and identified several chondrogenesis-associated transcription factors and collagen subtypes that were not previously linked to cartilage formation. Transient gene silencing of ATOH8 or EBF1 on day 0 attenuated chondrogenesis by deregulating the expression of key osteochondrogenic marker genes in micromass cultures. These results provide detailed insight into the molecular mechanism of chondrogenesis in primary micromass cultures and present a comprehensive dataset of the temporal transcriptomic landscape of chondrogenesis, which may serve as a platform for new molecular approaches in cartilage tissue engineering. Oxford University Press 2023-03-29 /pmc/articles/PMC10164575/ /pubmed/36987858 http://dx.doi.org/10.1093/nar/gkad210 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Data Resources and Analyses
Takács, Roland
Vágó, Judit
Póliska, Szilárd
Pushparaj, Peter Natesan
Ducza, László
Kovács, Patrik
Jin, Eun-Jung
Barrett-Jolley, Richard
Zákány, Róza
Matta, Csaba
The temporal transcriptomic signature of cartilage formation
title The temporal transcriptomic signature of cartilage formation
title_full The temporal transcriptomic signature of cartilage formation
title_fullStr The temporal transcriptomic signature of cartilage formation
title_full_unstemmed The temporal transcriptomic signature of cartilage formation
title_short The temporal transcriptomic signature of cartilage formation
title_sort temporal transcriptomic signature of cartilage formation
topic Data Resources and Analyses
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10164575/
https://www.ncbi.nlm.nih.gov/pubmed/36987858
http://dx.doi.org/10.1093/nar/gkad210
work_keys_str_mv AT takacsroland thetemporaltranscriptomicsignatureofcartilageformation
AT vagojudit thetemporaltranscriptomicsignatureofcartilageformation
AT poliskaszilard thetemporaltranscriptomicsignatureofcartilageformation
AT pushparajpeternatesan thetemporaltranscriptomicsignatureofcartilageformation
AT duczalaszlo thetemporaltranscriptomicsignatureofcartilageformation
AT kovacspatrik thetemporaltranscriptomicsignatureofcartilageformation
AT jineunjung thetemporaltranscriptomicsignatureofcartilageformation
AT barrettjolleyrichard thetemporaltranscriptomicsignatureofcartilageformation
AT zakanyroza thetemporaltranscriptomicsignatureofcartilageformation
AT mattacsaba thetemporaltranscriptomicsignatureofcartilageformation
AT takacsroland temporaltranscriptomicsignatureofcartilageformation
AT vagojudit temporaltranscriptomicsignatureofcartilageformation
AT poliskaszilard temporaltranscriptomicsignatureofcartilageformation
AT pushparajpeternatesan temporaltranscriptomicsignatureofcartilageformation
AT duczalaszlo temporaltranscriptomicsignatureofcartilageformation
AT kovacspatrik temporaltranscriptomicsignatureofcartilageformation
AT jineunjung temporaltranscriptomicsignatureofcartilageformation
AT barrettjolleyrichard temporaltranscriptomicsignatureofcartilageformation
AT zakanyroza temporaltranscriptomicsignatureofcartilageformation
AT mattacsaba temporaltranscriptomicsignatureofcartilageformation