Cargando…
Multi-task learning from multimodal single-cell omics with Matilda
Multimodal single-cell omics technologies enable multiple molecular programs to be simultaneously profiled at a global scale in individual cells, creating opportunities to study biological systems at a resolution that was previously inaccessible. However, the analysis of multimodal single-cell omics...
Autores principales: | Liu, Chunlei, Huang, Hao, Yang, Pengyi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10164589/ https://www.ncbi.nlm.nih.gov/pubmed/36912104 http://dx.doi.org/10.1093/nar/gkad157 |
Ejemplares similares
-
Ensemble deep learning of embeddings for clustering multimodal single-cell omics data
por: Yu, Lijia, et al.
Publicado: (2023) -
AggMapNet: enhanced and explainable low-sample omics deep learning with feature-aggregated multi-channel networks
por: Shen, Wan Xiang, et al.
Publicado: (2022) -
Interpretation of network-based integration from multi-omics longitudinal data
por: Bodein, Antoine, et al.
Publicado: (2021) -
La fortuna de Matilda Turpin /
por: Pombo, Alvaro
Publicado: (2006) -
Cluster-independent marker feature identification from single-cell omics data using SEMITONES
por: Vlot, Anna Hendrika Cornelia, et al.
Publicado: (2022)