Cargando…

Are current machine learning applications comparable to radiologist classification of degenerate and herniated discs and Modic change? A systematic review and meta-analysis

INTRODUCTION: Low back pain is the leading contributor to disability burden globally. It is commonly due to degeneration of the lumbar intervertebral discs (LDD). Magnetic resonance imaging (MRI) is the current best tool to visualize and diagnose LDD, but places high time demands on clinical radiolo...

Descripción completa

Detalles Bibliográficos
Autores principales: Compte, Roger, Granville Smith, Isabelle, Isaac, Amanda, Danckert, Nathan, McSweeney, Terence, Liantis, Panagiotis, Williams, Frances M. K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10164619/
https://www.ncbi.nlm.nih.gov/pubmed/37150769
http://dx.doi.org/10.1007/s00586-023-07718-0
_version_ 1785038108458221568
author Compte, Roger
Granville Smith, Isabelle
Isaac, Amanda
Danckert, Nathan
McSweeney, Terence
Liantis, Panagiotis
Williams, Frances M. K.
author_facet Compte, Roger
Granville Smith, Isabelle
Isaac, Amanda
Danckert, Nathan
McSweeney, Terence
Liantis, Panagiotis
Williams, Frances M. K.
author_sort Compte, Roger
collection PubMed
description INTRODUCTION: Low back pain is the leading contributor to disability burden globally. It is commonly due to degeneration of the lumbar intervertebral discs (LDD). Magnetic resonance imaging (MRI) is the current best tool to visualize and diagnose LDD, but places high time demands on clinical radiologists. Automated reading of spine MRIs could improve speed, accuracy, reliability and cost effectiveness in radiology departments. The aim of this review and meta-analysis was to determine if current machine learning algorithms perform well identifying disc degeneration, herniation, bulge and Modic change compared to radiologists. METHODS: A PRISMA systematic review protocol was developed and four electronic databases and reference lists were searched. Strict inclusion and exclusion criteria were defined. A PROBAST risk of bias and applicability analysis was performed. RESULTS: 1350 articles were extracted. Duplicates were removed and title and abstract searching identified original research articles that used machine learning (ML) algorithms to identify disc degeneration, herniation, bulge and Modic change from MRIs. 27 studies were included in the review; 25 and 14 studies were included multi-variate and bivariate meta-analysis, respectively. Studies used machine learning algorithms to assess LDD, disc herniation, bulge and Modic change. Models using deep learning, support vector machine, k-nearest neighbors, random forest and naïve Bayes algorithms were included. Meta-analyses found no differences in algorithm or classification performance. When algorithms were tested in replication or external validation studies, they did not perform as well as when assessed in developmental studies. Data augmentation improved algorithm performance when compared to models used with smaller datasets, there were no performance differences between augmented data and large datasets. DISCUSSION: This review highlights several shortcomings of current approaches, including few validation attempts or use of large sample sizes. To the best of the authors' knowledge, this is the first systematic review to explore this topic. We suggest the utilization of deep learning coupled with semi- or unsupervised learning approaches. Use of all information contained in MRI data will improve accuracy. Clear and complete reporting of study design, statistics and results will improve the reliability and quality of published literature. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00586-023-07718-0.
format Online
Article
Text
id pubmed-10164619
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-101646192023-05-09 Are current machine learning applications comparable to radiologist classification of degenerate and herniated discs and Modic change? A systematic review and meta-analysis Compte, Roger Granville Smith, Isabelle Isaac, Amanda Danckert, Nathan McSweeney, Terence Liantis, Panagiotis Williams, Frances M. K. Eur Spine J Review Article INTRODUCTION: Low back pain is the leading contributor to disability burden globally. It is commonly due to degeneration of the lumbar intervertebral discs (LDD). Magnetic resonance imaging (MRI) is the current best tool to visualize and diagnose LDD, but places high time demands on clinical radiologists. Automated reading of spine MRIs could improve speed, accuracy, reliability and cost effectiveness in radiology departments. The aim of this review and meta-analysis was to determine if current machine learning algorithms perform well identifying disc degeneration, herniation, bulge and Modic change compared to radiologists. METHODS: A PRISMA systematic review protocol was developed and four electronic databases and reference lists were searched. Strict inclusion and exclusion criteria were defined. A PROBAST risk of bias and applicability analysis was performed. RESULTS: 1350 articles were extracted. Duplicates were removed and title and abstract searching identified original research articles that used machine learning (ML) algorithms to identify disc degeneration, herniation, bulge and Modic change from MRIs. 27 studies were included in the review; 25 and 14 studies were included multi-variate and bivariate meta-analysis, respectively. Studies used machine learning algorithms to assess LDD, disc herniation, bulge and Modic change. Models using deep learning, support vector machine, k-nearest neighbors, random forest and naïve Bayes algorithms were included. Meta-analyses found no differences in algorithm or classification performance. When algorithms were tested in replication or external validation studies, they did not perform as well as when assessed in developmental studies. Data augmentation improved algorithm performance when compared to models used with smaller datasets, there were no performance differences between augmented data and large datasets. DISCUSSION: This review highlights several shortcomings of current approaches, including few validation attempts or use of large sample sizes. To the best of the authors' knowledge, this is the first systematic review to explore this topic. We suggest the utilization of deep learning coupled with semi- or unsupervised learning approaches. Use of all information contained in MRI data will improve accuracy. Clear and complete reporting of study design, statistics and results will improve the reliability and quality of published literature. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00586-023-07718-0. Springer Berlin Heidelberg 2023-05-08 2023-11 /pmc/articles/PMC10164619/ /pubmed/37150769 http://dx.doi.org/10.1007/s00586-023-07718-0 Text en © Crown 2023 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Review Article
Compte, Roger
Granville Smith, Isabelle
Isaac, Amanda
Danckert, Nathan
McSweeney, Terence
Liantis, Panagiotis
Williams, Frances M. K.
Are current machine learning applications comparable to radiologist classification of degenerate and herniated discs and Modic change? A systematic review and meta-analysis
title Are current machine learning applications comparable to radiologist classification of degenerate and herniated discs and Modic change? A systematic review and meta-analysis
title_full Are current machine learning applications comparable to radiologist classification of degenerate and herniated discs and Modic change? A systematic review and meta-analysis
title_fullStr Are current machine learning applications comparable to radiologist classification of degenerate and herniated discs and Modic change? A systematic review and meta-analysis
title_full_unstemmed Are current machine learning applications comparable to radiologist classification of degenerate and herniated discs and Modic change? A systematic review and meta-analysis
title_short Are current machine learning applications comparable to radiologist classification of degenerate and herniated discs and Modic change? A systematic review and meta-analysis
title_sort are current machine learning applications comparable to radiologist classification of degenerate and herniated discs and modic change? a systematic review and meta-analysis
topic Review Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10164619/
https://www.ncbi.nlm.nih.gov/pubmed/37150769
http://dx.doi.org/10.1007/s00586-023-07718-0
work_keys_str_mv AT compteroger arecurrentmachinelearningapplicationscomparabletoradiologistclassificationofdegenerateandherniateddiscsandmodicchangeasystematicreviewandmetaanalysis
AT granvillesmithisabelle arecurrentmachinelearningapplicationscomparabletoradiologistclassificationofdegenerateandherniateddiscsandmodicchangeasystematicreviewandmetaanalysis
AT isaacamanda arecurrentmachinelearningapplicationscomparabletoradiologistclassificationofdegenerateandherniateddiscsandmodicchangeasystematicreviewandmetaanalysis
AT danckertnathan arecurrentmachinelearningapplicationscomparabletoradiologistclassificationofdegenerateandherniateddiscsandmodicchangeasystematicreviewandmetaanalysis
AT mcsweeneyterence arecurrentmachinelearningapplicationscomparabletoradiologistclassificationofdegenerateandherniateddiscsandmodicchangeasystematicreviewandmetaanalysis
AT liantispanagiotis arecurrentmachinelearningapplicationscomparabletoradiologistclassificationofdegenerateandherniateddiscsandmodicchangeasystematicreviewandmetaanalysis
AT williamsfrancesmk arecurrentmachinelearningapplicationscomparabletoradiologistclassificationofdegenerateandherniateddiscsandmodicchangeasystematicreviewandmetaanalysis