Cargando…
Data infrastructures for AI in medical imaging: a report on the experiences of five EU projects
Artificial intelligence (AI) is transforming the field of medical imaging and has the potential to bring medicine from the era of ‘sick-care’ to the era of healthcare and prevention. The development of AI requires access to large, complete, and harmonized real-world datasets, representative of the p...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10164664/ https://www.ncbi.nlm.nih.gov/pubmed/37150779 http://dx.doi.org/10.1186/s41747-023-00336-x |
_version_ | 1785038113579466752 |
---|---|
author | Kondylakis, Haridimos Kalokyri, Varvara Sfakianakis, Stelios Marias, Kostas Tsiknakis, Manolis Jimenez-Pastor, Ana Camacho-Ramos, Eduardo Blanquer, Ignacio Segrelles, J. Damian López-Huguet, Sergio Barelle, Caroline Kogut-Czarkowska, Magdalena Tsakou, Gianna Siopis, Nikolaos Sakellariou, Zisis Bizopoulos, Paschalis Drossou, Vicky Lalas, Antonios Votis, Konstantinos Mallol, Pedro Marti-Bonmati, Luis Alberich, Leonor Cerdá Seymour, Karine Boucher, Samuel Ciarrocchi, Esther Fromont, Lauren Rambla, Jordi Harms, Alexander Gutierrez, Andrea Starmans, Martijn P. A. Prior, Fred Gelpi, Josep Ll. Lekadir, Karim |
author_facet | Kondylakis, Haridimos Kalokyri, Varvara Sfakianakis, Stelios Marias, Kostas Tsiknakis, Manolis Jimenez-Pastor, Ana Camacho-Ramos, Eduardo Blanquer, Ignacio Segrelles, J. Damian López-Huguet, Sergio Barelle, Caroline Kogut-Czarkowska, Magdalena Tsakou, Gianna Siopis, Nikolaos Sakellariou, Zisis Bizopoulos, Paschalis Drossou, Vicky Lalas, Antonios Votis, Konstantinos Mallol, Pedro Marti-Bonmati, Luis Alberich, Leonor Cerdá Seymour, Karine Boucher, Samuel Ciarrocchi, Esther Fromont, Lauren Rambla, Jordi Harms, Alexander Gutierrez, Andrea Starmans, Martijn P. A. Prior, Fred Gelpi, Josep Ll. Lekadir, Karim |
author_sort | Kondylakis, Haridimos |
collection | PubMed |
description | Artificial intelligence (AI) is transforming the field of medical imaging and has the potential to bring medicine from the era of ‘sick-care’ to the era of healthcare and prevention. The development of AI requires access to large, complete, and harmonized real-world datasets, representative of the population, and disease diversity. However, to date, efforts are fragmented, based on single–institution, size-limited, and annotation-limited datasets. Available public datasets (e.g., The Cancer Imaging Archive, TCIA, USA) are limited in scope, making model generalizability really difficult. In this direction, five European Union projects are currently working on the development of big data infrastructures that will enable European, ethically and General Data Protection Regulation-compliant, quality-controlled, cancer-related, medical imaging platforms, in which both large-scale data and AI algorithms will coexist. The vision is to create sustainable AI cloud-based platforms for the development, implementation, verification, and validation of trustable, usable, and reliable AI models for addressing specific unmet needs regarding cancer care provision. In this paper, we present an overview of the development efforts highlighting challenges and approaches selected providing valuable feedback to future attempts in the area. Key points • Artificial intelligence models for health imaging require access to large amounts of harmonized imaging data and metadata. • Main infrastructures adopted either collect centrally anonymized data or enable access to pseudonymized distributed data. • Developing a common data model for storing all relevant information is a challenge. • Trust of data providers in data sharing initiatives is essential. • An online European Union meta-tool-repository is a necessity minimizing effort duplication for the various projects in the area. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s41747-023-00336-x. |
format | Online Article Text |
id | pubmed-10164664 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Springer Vienna |
record_format | MEDLINE/PubMed |
spelling | pubmed-101646642023-05-09 Data infrastructures for AI in medical imaging: a report on the experiences of five EU projects Kondylakis, Haridimos Kalokyri, Varvara Sfakianakis, Stelios Marias, Kostas Tsiknakis, Manolis Jimenez-Pastor, Ana Camacho-Ramos, Eduardo Blanquer, Ignacio Segrelles, J. Damian López-Huguet, Sergio Barelle, Caroline Kogut-Czarkowska, Magdalena Tsakou, Gianna Siopis, Nikolaos Sakellariou, Zisis Bizopoulos, Paschalis Drossou, Vicky Lalas, Antonios Votis, Konstantinos Mallol, Pedro Marti-Bonmati, Luis Alberich, Leonor Cerdá Seymour, Karine Boucher, Samuel Ciarrocchi, Esther Fromont, Lauren Rambla, Jordi Harms, Alexander Gutierrez, Andrea Starmans, Martijn P. A. Prior, Fred Gelpi, Josep Ll. Lekadir, Karim Eur Radiol Exp Guideline/Position paper Artificial intelligence (AI) is transforming the field of medical imaging and has the potential to bring medicine from the era of ‘sick-care’ to the era of healthcare and prevention. The development of AI requires access to large, complete, and harmonized real-world datasets, representative of the population, and disease diversity. However, to date, efforts are fragmented, based on single–institution, size-limited, and annotation-limited datasets. Available public datasets (e.g., The Cancer Imaging Archive, TCIA, USA) are limited in scope, making model generalizability really difficult. In this direction, five European Union projects are currently working on the development of big data infrastructures that will enable European, ethically and General Data Protection Regulation-compliant, quality-controlled, cancer-related, medical imaging platforms, in which both large-scale data and AI algorithms will coexist. The vision is to create sustainable AI cloud-based platforms for the development, implementation, verification, and validation of trustable, usable, and reliable AI models for addressing specific unmet needs regarding cancer care provision. In this paper, we present an overview of the development efforts highlighting challenges and approaches selected providing valuable feedback to future attempts in the area. Key points • Artificial intelligence models for health imaging require access to large amounts of harmonized imaging data and metadata. • Main infrastructures adopted either collect centrally anonymized data or enable access to pseudonymized distributed data. • Developing a common data model for storing all relevant information is a challenge. • Trust of data providers in data sharing initiatives is essential. • An online European Union meta-tool-repository is a necessity minimizing effort duplication for the various projects in the area. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s41747-023-00336-x. Springer Vienna 2023-05-08 /pmc/articles/PMC10164664/ /pubmed/37150779 http://dx.doi.org/10.1186/s41747-023-00336-x Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Guideline/Position paper Kondylakis, Haridimos Kalokyri, Varvara Sfakianakis, Stelios Marias, Kostas Tsiknakis, Manolis Jimenez-Pastor, Ana Camacho-Ramos, Eduardo Blanquer, Ignacio Segrelles, J. Damian López-Huguet, Sergio Barelle, Caroline Kogut-Czarkowska, Magdalena Tsakou, Gianna Siopis, Nikolaos Sakellariou, Zisis Bizopoulos, Paschalis Drossou, Vicky Lalas, Antonios Votis, Konstantinos Mallol, Pedro Marti-Bonmati, Luis Alberich, Leonor Cerdá Seymour, Karine Boucher, Samuel Ciarrocchi, Esther Fromont, Lauren Rambla, Jordi Harms, Alexander Gutierrez, Andrea Starmans, Martijn P. A. Prior, Fred Gelpi, Josep Ll. Lekadir, Karim Data infrastructures for AI in medical imaging: a report on the experiences of five EU projects |
title | Data infrastructures for AI in medical imaging: a report on the experiences of five EU projects |
title_full | Data infrastructures for AI in medical imaging: a report on the experiences of five EU projects |
title_fullStr | Data infrastructures for AI in medical imaging: a report on the experiences of five EU projects |
title_full_unstemmed | Data infrastructures for AI in medical imaging: a report on the experiences of five EU projects |
title_short | Data infrastructures for AI in medical imaging: a report on the experiences of five EU projects |
title_sort | data infrastructures for ai in medical imaging: a report on the experiences of five eu projects |
topic | Guideline/Position paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10164664/ https://www.ncbi.nlm.nih.gov/pubmed/37150779 http://dx.doi.org/10.1186/s41747-023-00336-x |
work_keys_str_mv | AT kondylakisharidimos datainfrastructuresforaiinmedicalimagingareportontheexperiencesoffiveeuprojects AT kalokyrivarvara datainfrastructuresforaiinmedicalimagingareportontheexperiencesoffiveeuprojects AT sfakianakisstelios datainfrastructuresforaiinmedicalimagingareportontheexperiencesoffiveeuprojects AT mariaskostas datainfrastructuresforaiinmedicalimagingareportontheexperiencesoffiveeuprojects AT tsiknakismanolis datainfrastructuresforaiinmedicalimagingareportontheexperiencesoffiveeuprojects AT jimenezpastorana datainfrastructuresforaiinmedicalimagingareportontheexperiencesoffiveeuprojects AT camachoramoseduardo datainfrastructuresforaiinmedicalimagingareportontheexperiencesoffiveeuprojects AT blanquerignacio datainfrastructuresforaiinmedicalimagingareportontheexperiencesoffiveeuprojects AT segrellesjdamian datainfrastructuresforaiinmedicalimagingareportontheexperiencesoffiveeuprojects AT lopezhuguetsergio datainfrastructuresforaiinmedicalimagingareportontheexperiencesoffiveeuprojects AT barellecaroline datainfrastructuresforaiinmedicalimagingareportontheexperiencesoffiveeuprojects AT kogutczarkowskamagdalena datainfrastructuresforaiinmedicalimagingareportontheexperiencesoffiveeuprojects AT tsakougianna datainfrastructuresforaiinmedicalimagingareportontheexperiencesoffiveeuprojects AT siopisnikolaos datainfrastructuresforaiinmedicalimagingareportontheexperiencesoffiveeuprojects AT sakellariouzisis datainfrastructuresforaiinmedicalimagingareportontheexperiencesoffiveeuprojects AT bizopoulospaschalis datainfrastructuresforaiinmedicalimagingareportontheexperiencesoffiveeuprojects AT drossouvicky datainfrastructuresforaiinmedicalimagingareportontheexperiencesoffiveeuprojects AT lalasantonios datainfrastructuresforaiinmedicalimagingareportontheexperiencesoffiveeuprojects AT votiskonstantinos datainfrastructuresforaiinmedicalimagingareportontheexperiencesoffiveeuprojects AT mallolpedro datainfrastructuresforaiinmedicalimagingareportontheexperiencesoffiveeuprojects AT martibonmatiluis datainfrastructuresforaiinmedicalimagingareportontheexperiencesoffiveeuprojects AT alberichleonorcerda datainfrastructuresforaiinmedicalimagingareportontheexperiencesoffiveeuprojects AT seymourkarine datainfrastructuresforaiinmedicalimagingareportontheexperiencesoffiveeuprojects AT bouchersamuel datainfrastructuresforaiinmedicalimagingareportontheexperiencesoffiveeuprojects AT ciarrocchiesther datainfrastructuresforaiinmedicalimagingareportontheexperiencesoffiveeuprojects AT fromontlauren datainfrastructuresforaiinmedicalimagingareportontheexperiencesoffiveeuprojects AT ramblajordi datainfrastructuresforaiinmedicalimagingareportontheexperiencesoffiveeuprojects AT harmsalexander datainfrastructuresforaiinmedicalimagingareportontheexperiencesoffiveeuprojects AT gutierrezandrea datainfrastructuresforaiinmedicalimagingareportontheexperiencesoffiveeuprojects AT starmansmartijnpa datainfrastructuresforaiinmedicalimagingareportontheexperiencesoffiveeuprojects AT priorfred datainfrastructuresforaiinmedicalimagingareportontheexperiencesoffiveeuprojects AT gelpijosepll datainfrastructuresforaiinmedicalimagingareportontheexperiencesoffiveeuprojects AT lekadirkarim datainfrastructuresforaiinmedicalimagingareportontheexperiencesoffiveeuprojects |