Cargando…
A Genetically Encoded Biosensor for the Detection of Levulinic Acid
Levulinic acid (LA) is a valuable chemical used in fuel additives, fragrances, and polymers. In this study, we proposed possible biosynthetic pathways for LA production from lignin and poly(ethylene terephthalate). We also created a genetically encoded biosensor responsive to LA, which can be used f...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Society for Microbiology and Biotechnology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10164729/ https://www.ncbi.nlm.nih.gov/pubmed/36775859 http://dx.doi.org/10.4014/jmb.2301.01021 |
_version_ | 1785038117607047168 |
---|---|
author | Kim, Tae Hyun Woo, Seung-Gyun Kim, Seong Keun Yoo, Byeong Hyeon Shin, Jonghyeok Rha, Eugene Kim, Soo Jung Kwon, Kil Koang Lee, Hyewon Kim, Haseong Kim, Hee-Taek Sung, Bong-Hyun Lee, Seung-Goo Lee, Dae-Hee |
author_facet | Kim, Tae Hyun Woo, Seung-Gyun Kim, Seong Keun Yoo, Byeong Hyeon Shin, Jonghyeok Rha, Eugene Kim, Soo Jung Kwon, Kil Koang Lee, Hyewon Kim, Haseong Kim, Hee-Taek Sung, Bong-Hyun Lee, Seung-Goo Lee, Dae-Hee |
author_sort | Kim, Tae Hyun |
collection | PubMed |
description | Levulinic acid (LA) is a valuable chemical used in fuel additives, fragrances, and polymers. In this study, we proposed possible biosynthetic pathways for LA production from lignin and poly(ethylene terephthalate). We also created a genetically encoded biosensor responsive to LA, which can be used for screening and evolving the LA biosynthesis pathway genes, by employing an LvaR transcriptional regulator of Pseudomonas putida KT2440 to express a fluorescent reporter gene. The LvaR regulator senses LA as a cognate ligand. The LA biosensor was first examined in an Escherichia coli strain and was found to be non-functional. When the host of the LA biosensor was switched from E. coli to P. putida KT2440, the LA biosensor showed a linear correlation between fluorescence intensity and LA concentration in the range of 0.156–10 mM LA. In addition, we determined that 0.156 mM LA was the limit of LA detection in P. putida KT2440 harboring an LA-responsive biosensor. The maximal fluorescence increase was 12.3-fold in the presence of 10 mM LA compared to that in the absence of LA. The individual cell responses to LA concentrations reflected the population-averaged responses, which enabled high-throughput screening of enzymes and metabolic pathways involved in LA biosynthesis and sustainable production of LA in engineered microbes. |
format | Online Article Text |
id | pubmed-10164729 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Korean Society for Microbiology and Biotechnology |
record_format | MEDLINE/PubMed |
spelling | pubmed-101647292023-05-09 A Genetically Encoded Biosensor for the Detection of Levulinic Acid Kim, Tae Hyun Woo, Seung-Gyun Kim, Seong Keun Yoo, Byeong Hyeon Shin, Jonghyeok Rha, Eugene Kim, Soo Jung Kwon, Kil Koang Lee, Hyewon Kim, Haseong Kim, Hee-Taek Sung, Bong-Hyun Lee, Seung-Goo Lee, Dae-Hee J Microbiol Biotechnol Research article Levulinic acid (LA) is a valuable chemical used in fuel additives, fragrances, and polymers. In this study, we proposed possible biosynthetic pathways for LA production from lignin and poly(ethylene terephthalate). We also created a genetically encoded biosensor responsive to LA, which can be used for screening and evolving the LA biosynthesis pathway genes, by employing an LvaR transcriptional regulator of Pseudomonas putida KT2440 to express a fluorescent reporter gene. The LvaR regulator senses LA as a cognate ligand. The LA biosensor was first examined in an Escherichia coli strain and was found to be non-functional. When the host of the LA biosensor was switched from E. coli to P. putida KT2440, the LA biosensor showed a linear correlation between fluorescence intensity and LA concentration in the range of 0.156–10 mM LA. In addition, we determined that 0.156 mM LA was the limit of LA detection in P. putida KT2440 harboring an LA-responsive biosensor. The maximal fluorescence increase was 12.3-fold in the presence of 10 mM LA compared to that in the absence of LA. The individual cell responses to LA concentrations reflected the population-averaged responses, which enabled high-throughput screening of enzymes and metabolic pathways involved in LA biosynthesis and sustainable production of LA in engineered microbes. The Korean Society for Microbiology and Biotechnology 2023-04-28 2023-01-27 /pmc/articles/PMC10164729/ /pubmed/36775859 http://dx.doi.org/10.4014/jmb.2301.01021 Text en Copyright © 2023 by the authors. Licensee KMB https://creativecommons.org/licenses/by/4.0/This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/) |
spellingShingle | Research article Kim, Tae Hyun Woo, Seung-Gyun Kim, Seong Keun Yoo, Byeong Hyeon Shin, Jonghyeok Rha, Eugene Kim, Soo Jung Kwon, Kil Koang Lee, Hyewon Kim, Haseong Kim, Hee-Taek Sung, Bong-Hyun Lee, Seung-Goo Lee, Dae-Hee A Genetically Encoded Biosensor for the Detection of Levulinic Acid |
title | A Genetically Encoded Biosensor for the Detection of Levulinic Acid |
title_full | A Genetically Encoded Biosensor for the Detection of Levulinic Acid |
title_fullStr | A Genetically Encoded Biosensor for the Detection of Levulinic Acid |
title_full_unstemmed | A Genetically Encoded Biosensor for the Detection of Levulinic Acid |
title_short | A Genetically Encoded Biosensor for the Detection of Levulinic Acid |
title_sort | genetically encoded biosensor for the detection of levulinic acid |
topic | Research article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10164729/ https://www.ncbi.nlm.nih.gov/pubmed/36775859 http://dx.doi.org/10.4014/jmb.2301.01021 |
work_keys_str_mv | AT kimtaehyun ageneticallyencodedbiosensorforthedetectionoflevulinicacid AT wooseunggyun ageneticallyencodedbiosensorforthedetectionoflevulinicacid AT kimseongkeun ageneticallyencodedbiosensorforthedetectionoflevulinicacid AT yoobyeonghyeon ageneticallyencodedbiosensorforthedetectionoflevulinicacid AT shinjonghyeok ageneticallyencodedbiosensorforthedetectionoflevulinicacid AT rhaeugene ageneticallyencodedbiosensorforthedetectionoflevulinicacid AT kimsoojung ageneticallyencodedbiosensorforthedetectionoflevulinicacid AT kwonkilkoang ageneticallyencodedbiosensorforthedetectionoflevulinicacid AT leehyewon ageneticallyencodedbiosensorforthedetectionoflevulinicacid AT kimhaseong ageneticallyencodedbiosensorforthedetectionoflevulinicacid AT kimheetaek ageneticallyencodedbiosensorforthedetectionoflevulinicacid AT sungbonghyun ageneticallyencodedbiosensorforthedetectionoflevulinicacid AT leeseunggoo ageneticallyencodedbiosensorforthedetectionoflevulinicacid AT leedaehee ageneticallyencodedbiosensorforthedetectionoflevulinicacid AT kimtaehyun geneticallyencodedbiosensorforthedetectionoflevulinicacid AT wooseunggyun geneticallyencodedbiosensorforthedetectionoflevulinicacid AT kimseongkeun geneticallyencodedbiosensorforthedetectionoflevulinicacid AT yoobyeonghyeon geneticallyencodedbiosensorforthedetectionoflevulinicacid AT shinjonghyeok geneticallyencodedbiosensorforthedetectionoflevulinicacid AT rhaeugene geneticallyencodedbiosensorforthedetectionoflevulinicacid AT kimsoojung geneticallyencodedbiosensorforthedetectionoflevulinicacid AT kwonkilkoang geneticallyencodedbiosensorforthedetectionoflevulinicacid AT leehyewon geneticallyencodedbiosensorforthedetectionoflevulinicacid AT kimhaseong geneticallyencodedbiosensorforthedetectionoflevulinicacid AT kimheetaek geneticallyencodedbiosensorforthedetectionoflevulinicacid AT sungbonghyun geneticallyencodedbiosensorforthedetectionoflevulinicacid AT leeseunggoo geneticallyencodedbiosensorforthedetectionoflevulinicacid AT leedaehee geneticallyencodedbiosensorforthedetectionoflevulinicacid |