Cargando…
No silver bullet: interpretable ML models must be explained
Recent years witnessed a number of proposals for the use of the so-called interpretable models in specific application domains. These include high-risk, but also safety-critical domains. In contrast, other works reported some pitfalls of machine learning model interpretability, in part justified by...
Autores principales: | Marques-Silva, Joao, Ignatiev, Alexey |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10165097/ https://www.ncbi.nlm.nih.gov/pubmed/37168320 http://dx.doi.org/10.3389/frai.2023.1128212 |
Ejemplares similares
-
Interpretability With Accurate Small Models
por: Ghose, Abhishek, et al.
Publicado: (2020) -
A survey on detecting healthcare concept drift in AI/ML models from a finance perspective
por: M. S., Abdul Razak, et al.
Publicado: (2023) -
Explainable Model Fusion for Customer Journey Mapping
por: Okazaki, Kotaro, et al.
Publicado: (2022) -
The Greatest Challenge to Using AI/ML for Primary Health Care: Mindset or Datasets?
por: Troncoso, Erica L.
Publicado: (2020) -
An Interpretable Predictive Model of Vaccine Utilization for Tanzania
por: Hariharan, Ramkumar, et al.
Publicado: (2020)