Cargando…
Deep learning of value at risk through generative neural network models: The case of the Variational auto encoder
We present in this paper a method to compute, using generative neural networks, an estimator of the “Value at Risk” for a financial asset. The method uses a Variational Auto Encoder with an 'energy' (a.k.a. Radon-Sobolev) kernel. The result behaves according to intuition and is in line wit...
Autores principales: | Brugière, Pierre, Turinici, Gabriel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10165165/ https://www.ncbi.nlm.nih.gov/pubmed/37168774 http://dx.doi.org/10.1016/j.mex.2023.102192 |
Ejemplares similares
-
Comparisons of automated machine learning (AutoML) in predicting whistleblowing of academic dishonesty with demographic and theory of planned behavior
por: Rahman, Rahayu Abdul, et al.
Publicado: (2023) -
Children's understanding of financial literacy and parents' choice of financial knowledge learning methods in Malaysia
por: Murugiah, Logasvathi, et al.
Publicado: (2023) -
The effects of fake reviews during stepwise topic movement on shopping attitude in social network marketing
por: Hosseinzadeh Shahri, Masoumeh, et al.
Publicado: (2023) -
Investor attention on COVID-19 and African stock returns
por: Iyke, Bernard Njindan, et al.
Publicado: (2020) -
Exploring the effect of Covid-19 on herding in Asian financial markets
por: Vidya, C.T., et al.
Publicado: (2022)