Cargando…
DEcancer: Machine learning framework tailored to liquid biopsy based cancer detection and biomarker signature selection
Cancer is a leading cause of mortality worldwide. Over 50% of cancers are diagnosed late, rendering many treatments ineffective. Existing liquid biopsy studies demonstrate a minimally invasive and inexpensive approach for disease detection but lack parsimonious biomarker selection, exhibit poor canc...
Autores principales: | Halner, Andreas, Hankey, Luke, Liang, Zhu, Pozzetti, Francesco, Szulc, Daniel, Mi, Ella, Liu, Geoffrey, Kessler, Benedikt M, Syed, Junetha, Liu, Peter Jianrui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10165183/ https://www.ncbi.nlm.nih.gov/pubmed/37168566 http://dx.doi.org/10.1016/j.isci.2023.106610 |
Ejemplares similares
-
Accelerating the Development and Validation of Liquid Biopsy for Early Cancer Screening and Treatment Tailoring
por: Horgan, Denis, et al.
Publicado: (2022) -
Toward reliable biomarker signatures in the age of liquid biopsies - how to standardize the small RNA-Seq workflow
por: Buschmann, Dominik, et al.
Publicado: (2016) -
Targeted proteomics identifies liquid-biopsy signatures for extracapsular prostate cancer
por: Kim, Yunee, et al.
Publicado: (2016) -
A novel microRNA signature for the detection of melanoma by liquid biopsy
por: Sabato, Claudia, et al.
Publicado: (2022) -
Characterizing DNA methylation signatures of retinoblastoma using aqueous humor liquid biopsy
por: Li, Hong-Tao, et al.
Publicado: (2022)