Cargando…
Bias in Odds Ratios From Logistic Regression Methods With Sparse Data Sets
BACKGROUND: Logistic regression models are widely used to evaluate the association between a binary outcome and a set of covariates. However, when there are few study participants at the outcome and covariate levels, the models lead to bias of the odds ratio (OR) estimated using the maximum likeliho...
Autores principales: | Gosho, Masahiko, Ohigashi, Tomohiro, Nagashima, Kengo, Ito, Yuri, Maruo, Kazushi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Japan Epidemiological Association
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10165217/ https://www.ncbi.nlm.nih.gov/pubmed/34565762 http://dx.doi.org/10.2188/jea.JE20210089 |
Ejemplares similares
-
Publisher Correction: “Bias in odds ratios from logistic regression methods with sparse data sets”
por: Gosho, Masahiko, et al.
Publicado: (2023) -
Bias in odds ratios by logistic regression modelling and sample size
por: Nemes, Szilard, et al.
Publicado: (2009) -
SignalDetDDI: An SAS macro for detecting adverse drug-drug interactions in spontaneous reporting systems
por: Gosho, Masahiko, et al.
Publicado: (2018) -
Asymptotically Unbiased Estimation of Exposure Odds Ratios in Complete Records Logistic Regression
por: Bartlett, Jonathan W., et al.
Publicado: (2015) -
Odds ratios from logistic, geometric, Poisson, and negative binomial regression models
por: Sroka, Christopher J., et al.
Publicado: (2018)