Cargando…
Investigating the spatial interaction of immune cells in colon cancer
The intricate network of interactions between cells and molecules in the tumor microenvironment creates a heterogeneous ecosystem. The proximity of the cells and molecules to their activators and inhibitors is essential in the progression of tumors. Here, we develop a system of partial differential...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10165418/ https://www.ncbi.nlm.nih.gov/pubmed/37168560 http://dx.doi.org/10.1016/j.isci.2023.106596 |
Sumario: | The intricate network of interactions between cells and molecules in the tumor microenvironment creates a heterogeneous ecosystem. The proximity of the cells and molecules to their activators and inhibitors is essential in the progression of tumors. Here, we develop a system of partial differential equations coupled with linear elasticity to investigate the effects of spatial interactions on the tumor microenvironment. We observe interesting cell and cytokine distribution patterns, which are heavily affected by macrophages. We also see that cytotoxic T cells get recruited and suppressed at the site of macrophages. Moreover, we observe that anti-tumor macrophages reorganize the patterns in favor of a more spatially restricted cancer and necrotic core. Furthermore, the adjoint-based sensitivity analysis indicates that the most sensitive model’s parameters are directly related to macrophages. The results emphasize the widely acknowledged effect of macrophages in controlling cancer cells population and spatially arranging cells in the tumor microenvironment. |
---|