Cargando…

Risk prediction models for endometrial cancer: development and validation in an international consortium

BACKGROUND: Endometrial cancer risk stratification may help target interventions, screening, or prophylactic hysterectomy to mitigate the rising burden of this cancer. However, existing prediction models have been developed in select cohorts and have not considered genetic factors. METHODS: We devel...

Descripción completa

Detalles Bibliográficos
Autores principales: Shi, Joy, Kraft, Peter, Rosner, Bernard A, Benavente, Yolanda, Black, Amanda, Brinton, Louise A, Chen, Chu, Clarke, Megan A, Cook, Linda S, Costas, Laura, Dal Maso, Luigino, Freudenheim, Jo L, Frias-Gomez, Jon, Friedenreich, Christine M, Garcia-Closas, Montserrat, Goodman, Marc T, Johnson, Lisa, La Vecchia, Carlo, Levi, Fabio, Lissowska, Jolanta, Lu, Lingeng, McCann, Susan E, Moysich, Kirsten B, Negri, Eva, O'Connell, Kelli, Parazzini, Fabio, Petruzella, Stacey, Polesel, Jerry, Ponte, Jeanette, Rebbeck, Timothy R, Reynolds, Peggy, Ricceri, Fulvio, Risch, Harvey A, Sacerdote, Carlotta, Setiawan, Veronica W, Shu, Xiao-Ou, Spurdle, Amanda B, Trabert, Britton, Webb, Penelope M, Wentzensen, Nicolas, Wilkens, Lynne R, Xu, Wang Hong, Yang, Hannah P, Yu, Herbert, Du, Mengmeng, De Vivo, Immaculata
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10165481/
https://www.ncbi.nlm.nih.gov/pubmed/36688725
http://dx.doi.org/10.1093/jnci/djad014
_version_ 1785038275028713472
author Shi, Joy
Kraft, Peter
Rosner, Bernard A
Benavente, Yolanda
Black, Amanda
Brinton, Louise A
Chen, Chu
Clarke, Megan A
Cook, Linda S
Costas, Laura
Dal Maso, Luigino
Freudenheim, Jo L
Frias-Gomez, Jon
Friedenreich, Christine M
Garcia-Closas, Montserrat
Goodman, Marc T
Johnson, Lisa
La Vecchia, Carlo
Levi, Fabio
Lissowska, Jolanta
Lu, Lingeng
McCann, Susan E
Moysich, Kirsten B
Negri, Eva
O'Connell, Kelli
Parazzini, Fabio
Petruzella, Stacey
Polesel, Jerry
Ponte, Jeanette
Rebbeck, Timothy R
Reynolds, Peggy
Ricceri, Fulvio
Risch, Harvey A
Sacerdote, Carlotta
Setiawan, Veronica W
Shu, Xiao-Ou
Spurdle, Amanda B
Trabert, Britton
Webb, Penelope M
Wentzensen, Nicolas
Wilkens, Lynne R
Xu, Wang Hong
Yang, Hannah P
Yu, Herbert
Du, Mengmeng
De Vivo, Immaculata
author_facet Shi, Joy
Kraft, Peter
Rosner, Bernard A
Benavente, Yolanda
Black, Amanda
Brinton, Louise A
Chen, Chu
Clarke, Megan A
Cook, Linda S
Costas, Laura
Dal Maso, Luigino
Freudenheim, Jo L
Frias-Gomez, Jon
Friedenreich, Christine M
Garcia-Closas, Montserrat
Goodman, Marc T
Johnson, Lisa
La Vecchia, Carlo
Levi, Fabio
Lissowska, Jolanta
Lu, Lingeng
McCann, Susan E
Moysich, Kirsten B
Negri, Eva
O'Connell, Kelli
Parazzini, Fabio
Petruzella, Stacey
Polesel, Jerry
Ponte, Jeanette
Rebbeck, Timothy R
Reynolds, Peggy
Ricceri, Fulvio
Risch, Harvey A
Sacerdote, Carlotta
Setiawan, Veronica W
Shu, Xiao-Ou
Spurdle, Amanda B
Trabert, Britton
Webb, Penelope M
Wentzensen, Nicolas
Wilkens, Lynne R
Xu, Wang Hong
Yang, Hannah P
Yu, Herbert
Du, Mengmeng
De Vivo, Immaculata
author_sort Shi, Joy
collection PubMed
description BACKGROUND: Endometrial cancer risk stratification may help target interventions, screening, or prophylactic hysterectomy to mitigate the rising burden of this cancer. However, existing prediction models have been developed in select cohorts and have not considered genetic factors. METHODS: We developed endometrial cancer risk prediction models using data on postmenopausal White women aged 45-85 years from 19 case-control studies in the Epidemiology of Endometrial Cancer Consortium (E2C2). Relative risk estimates for predictors were combined with age-specific endometrial cancer incidence rates and estimates for the underlying risk factor distribution. We externally validated the models in 3 cohorts: Nurses’ Health Study (NHS), NHS II, and the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. RESULTS: Area under the receiver operating characteristic curves for the epidemiologic model ranged from 0.64 (95% confidence interval [CI] = 0.62 to 0.67) to 0.69 (95% CI = 0.66 to 0.72). Improvements in discrimination from the addition of genetic factors were modest (no change in area under the receiver operating characteristic curves in NHS; PLCO = 0.64 to 0.66). The epidemiologic model was well calibrated in NHS II (overall expected-to-observed ratio [E/O] = 1.09, 95% CI = 0.98 to 1.22) and PLCO (overall E/O = 1.04, 95% CI = 0.95 to 1.13) but poorly calibrated in NHS (overall E/O = 0.55, 95% CI = 0.51 to 0.59). CONCLUSIONS: Using data from the largest, most heterogeneous study population to date (to our knowledge), prediction models based on epidemiologic factors alone successfully identified women at high risk of endometrial cancer. Genetic factors offered limited improvements in discrimination. Further work is needed to refine this tool for clinical or public health practice and expand these models to multiethnic populations.
format Online
Article
Text
id pubmed-10165481
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-101654812023-05-09 Risk prediction models for endometrial cancer: development and validation in an international consortium Shi, Joy Kraft, Peter Rosner, Bernard A Benavente, Yolanda Black, Amanda Brinton, Louise A Chen, Chu Clarke, Megan A Cook, Linda S Costas, Laura Dal Maso, Luigino Freudenheim, Jo L Frias-Gomez, Jon Friedenreich, Christine M Garcia-Closas, Montserrat Goodman, Marc T Johnson, Lisa La Vecchia, Carlo Levi, Fabio Lissowska, Jolanta Lu, Lingeng McCann, Susan E Moysich, Kirsten B Negri, Eva O'Connell, Kelli Parazzini, Fabio Petruzella, Stacey Polesel, Jerry Ponte, Jeanette Rebbeck, Timothy R Reynolds, Peggy Ricceri, Fulvio Risch, Harvey A Sacerdote, Carlotta Setiawan, Veronica W Shu, Xiao-Ou Spurdle, Amanda B Trabert, Britton Webb, Penelope M Wentzensen, Nicolas Wilkens, Lynne R Xu, Wang Hong Yang, Hannah P Yu, Herbert Du, Mengmeng De Vivo, Immaculata J Natl Cancer Inst Article BACKGROUND: Endometrial cancer risk stratification may help target interventions, screening, or prophylactic hysterectomy to mitigate the rising burden of this cancer. However, existing prediction models have been developed in select cohorts and have not considered genetic factors. METHODS: We developed endometrial cancer risk prediction models using data on postmenopausal White women aged 45-85 years from 19 case-control studies in the Epidemiology of Endometrial Cancer Consortium (E2C2). Relative risk estimates for predictors were combined with age-specific endometrial cancer incidence rates and estimates for the underlying risk factor distribution. We externally validated the models in 3 cohorts: Nurses’ Health Study (NHS), NHS II, and the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. RESULTS: Area under the receiver operating characteristic curves for the epidemiologic model ranged from 0.64 (95% confidence interval [CI] = 0.62 to 0.67) to 0.69 (95% CI = 0.66 to 0.72). Improvements in discrimination from the addition of genetic factors were modest (no change in area under the receiver operating characteristic curves in NHS; PLCO = 0.64 to 0.66). The epidemiologic model was well calibrated in NHS II (overall expected-to-observed ratio [E/O] = 1.09, 95% CI = 0.98 to 1.22) and PLCO (overall E/O = 1.04, 95% CI = 0.95 to 1.13) but poorly calibrated in NHS (overall E/O = 0.55, 95% CI = 0.51 to 0.59). CONCLUSIONS: Using data from the largest, most heterogeneous study population to date (to our knowledge), prediction models based on epidemiologic factors alone successfully identified women at high risk of endometrial cancer. Genetic factors offered limited improvements in discrimination. Further work is needed to refine this tool for clinical or public health practice and expand these models to multiethnic populations. Oxford University Press 2023-01-23 /pmc/articles/PMC10165481/ /pubmed/36688725 http://dx.doi.org/10.1093/jnci/djad014 Text en © The Author(s) 2023. Published by Oxford University Press. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Article
Shi, Joy
Kraft, Peter
Rosner, Bernard A
Benavente, Yolanda
Black, Amanda
Brinton, Louise A
Chen, Chu
Clarke, Megan A
Cook, Linda S
Costas, Laura
Dal Maso, Luigino
Freudenheim, Jo L
Frias-Gomez, Jon
Friedenreich, Christine M
Garcia-Closas, Montserrat
Goodman, Marc T
Johnson, Lisa
La Vecchia, Carlo
Levi, Fabio
Lissowska, Jolanta
Lu, Lingeng
McCann, Susan E
Moysich, Kirsten B
Negri, Eva
O'Connell, Kelli
Parazzini, Fabio
Petruzella, Stacey
Polesel, Jerry
Ponte, Jeanette
Rebbeck, Timothy R
Reynolds, Peggy
Ricceri, Fulvio
Risch, Harvey A
Sacerdote, Carlotta
Setiawan, Veronica W
Shu, Xiao-Ou
Spurdle, Amanda B
Trabert, Britton
Webb, Penelope M
Wentzensen, Nicolas
Wilkens, Lynne R
Xu, Wang Hong
Yang, Hannah P
Yu, Herbert
Du, Mengmeng
De Vivo, Immaculata
Risk prediction models for endometrial cancer: development and validation in an international consortium
title Risk prediction models for endometrial cancer: development and validation in an international consortium
title_full Risk prediction models for endometrial cancer: development and validation in an international consortium
title_fullStr Risk prediction models for endometrial cancer: development and validation in an international consortium
title_full_unstemmed Risk prediction models for endometrial cancer: development and validation in an international consortium
title_short Risk prediction models for endometrial cancer: development and validation in an international consortium
title_sort risk prediction models for endometrial cancer: development and validation in an international consortium
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10165481/
https://www.ncbi.nlm.nih.gov/pubmed/36688725
http://dx.doi.org/10.1093/jnci/djad014
work_keys_str_mv AT shijoy riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium
AT kraftpeter riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium
AT rosnerbernarda riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium
AT benaventeyolanda riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium
AT blackamanda riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium
AT brintonlouisea riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium
AT chenchu riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium
AT clarkemegana riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium
AT cooklindas riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium
AT costaslaura riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium
AT dalmasoluigino riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium
AT freudenheimjol riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium
AT friasgomezjon riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium
AT friedenreichchristinem riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium
AT garciaclosasmontserrat riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium
AT goodmanmarct riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium
AT johnsonlisa riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium
AT lavecchiacarlo riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium
AT levifabio riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium
AT lissowskajolanta riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium
AT lulingeng riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium
AT mccannsusane riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium
AT moysichkirstenb riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium
AT negrieva riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium
AT oconnellkelli riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium
AT parazzinifabio riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium
AT petruzellastacey riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium
AT poleseljerry riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium
AT pontejeanette riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium
AT rebbecktimothyr riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium
AT reynoldspeggy riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium
AT riccerifulvio riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium
AT rischharveya riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium
AT sacerdotecarlotta riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium
AT setiawanveronicaw riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium
AT shuxiaoou riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium
AT spurdleamandab riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium
AT trabertbritton riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium
AT webbpenelopem riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium
AT wentzensennicolas riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium
AT wilkenslynner riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium
AT xuwanghong riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium
AT yanghannahp riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium
AT yuherbert riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium
AT dumengmeng riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium
AT devivoimmaculata riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium