Cargando…
Risk prediction models for endometrial cancer: development and validation in an international consortium
BACKGROUND: Endometrial cancer risk stratification may help target interventions, screening, or prophylactic hysterectomy to mitigate the rising burden of this cancer. However, existing prediction models have been developed in select cohorts and have not considered genetic factors. METHODS: We devel...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10165481/ https://www.ncbi.nlm.nih.gov/pubmed/36688725 http://dx.doi.org/10.1093/jnci/djad014 |
_version_ | 1785038275028713472 |
---|---|
author | Shi, Joy Kraft, Peter Rosner, Bernard A Benavente, Yolanda Black, Amanda Brinton, Louise A Chen, Chu Clarke, Megan A Cook, Linda S Costas, Laura Dal Maso, Luigino Freudenheim, Jo L Frias-Gomez, Jon Friedenreich, Christine M Garcia-Closas, Montserrat Goodman, Marc T Johnson, Lisa La Vecchia, Carlo Levi, Fabio Lissowska, Jolanta Lu, Lingeng McCann, Susan E Moysich, Kirsten B Negri, Eva O'Connell, Kelli Parazzini, Fabio Petruzella, Stacey Polesel, Jerry Ponte, Jeanette Rebbeck, Timothy R Reynolds, Peggy Ricceri, Fulvio Risch, Harvey A Sacerdote, Carlotta Setiawan, Veronica W Shu, Xiao-Ou Spurdle, Amanda B Trabert, Britton Webb, Penelope M Wentzensen, Nicolas Wilkens, Lynne R Xu, Wang Hong Yang, Hannah P Yu, Herbert Du, Mengmeng De Vivo, Immaculata |
author_facet | Shi, Joy Kraft, Peter Rosner, Bernard A Benavente, Yolanda Black, Amanda Brinton, Louise A Chen, Chu Clarke, Megan A Cook, Linda S Costas, Laura Dal Maso, Luigino Freudenheim, Jo L Frias-Gomez, Jon Friedenreich, Christine M Garcia-Closas, Montserrat Goodman, Marc T Johnson, Lisa La Vecchia, Carlo Levi, Fabio Lissowska, Jolanta Lu, Lingeng McCann, Susan E Moysich, Kirsten B Negri, Eva O'Connell, Kelli Parazzini, Fabio Petruzella, Stacey Polesel, Jerry Ponte, Jeanette Rebbeck, Timothy R Reynolds, Peggy Ricceri, Fulvio Risch, Harvey A Sacerdote, Carlotta Setiawan, Veronica W Shu, Xiao-Ou Spurdle, Amanda B Trabert, Britton Webb, Penelope M Wentzensen, Nicolas Wilkens, Lynne R Xu, Wang Hong Yang, Hannah P Yu, Herbert Du, Mengmeng De Vivo, Immaculata |
author_sort | Shi, Joy |
collection | PubMed |
description | BACKGROUND: Endometrial cancer risk stratification may help target interventions, screening, or prophylactic hysterectomy to mitigate the rising burden of this cancer. However, existing prediction models have been developed in select cohorts and have not considered genetic factors. METHODS: We developed endometrial cancer risk prediction models using data on postmenopausal White women aged 45-85 years from 19 case-control studies in the Epidemiology of Endometrial Cancer Consortium (E2C2). Relative risk estimates for predictors were combined with age-specific endometrial cancer incidence rates and estimates for the underlying risk factor distribution. We externally validated the models in 3 cohorts: Nurses’ Health Study (NHS), NHS II, and the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. RESULTS: Area under the receiver operating characteristic curves for the epidemiologic model ranged from 0.64 (95% confidence interval [CI] = 0.62 to 0.67) to 0.69 (95% CI = 0.66 to 0.72). Improvements in discrimination from the addition of genetic factors were modest (no change in area under the receiver operating characteristic curves in NHS; PLCO = 0.64 to 0.66). The epidemiologic model was well calibrated in NHS II (overall expected-to-observed ratio [E/O] = 1.09, 95% CI = 0.98 to 1.22) and PLCO (overall E/O = 1.04, 95% CI = 0.95 to 1.13) but poorly calibrated in NHS (overall E/O = 0.55, 95% CI = 0.51 to 0.59). CONCLUSIONS: Using data from the largest, most heterogeneous study population to date (to our knowledge), prediction models based on epidemiologic factors alone successfully identified women at high risk of endometrial cancer. Genetic factors offered limited improvements in discrimination. Further work is needed to refine this tool for clinical or public health practice and expand these models to multiethnic populations. |
format | Online Article Text |
id | pubmed-10165481 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-101654812023-05-09 Risk prediction models for endometrial cancer: development and validation in an international consortium Shi, Joy Kraft, Peter Rosner, Bernard A Benavente, Yolanda Black, Amanda Brinton, Louise A Chen, Chu Clarke, Megan A Cook, Linda S Costas, Laura Dal Maso, Luigino Freudenheim, Jo L Frias-Gomez, Jon Friedenreich, Christine M Garcia-Closas, Montserrat Goodman, Marc T Johnson, Lisa La Vecchia, Carlo Levi, Fabio Lissowska, Jolanta Lu, Lingeng McCann, Susan E Moysich, Kirsten B Negri, Eva O'Connell, Kelli Parazzini, Fabio Petruzella, Stacey Polesel, Jerry Ponte, Jeanette Rebbeck, Timothy R Reynolds, Peggy Ricceri, Fulvio Risch, Harvey A Sacerdote, Carlotta Setiawan, Veronica W Shu, Xiao-Ou Spurdle, Amanda B Trabert, Britton Webb, Penelope M Wentzensen, Nicolas Wilkens, Lynne R Xu, Wang Hong Yang, Hannah P Yu, Herbert Du, Mengmeng De Vivo, Immaculata J Natl Cancer Inst Article BACKGROUND: Endometrial cancer risk stratification may help target interventions, screening, or prophylactic hysterectomy to mitigate the rising burden of this cancer. However, existing prediction models have been developed in select cohorts and have not considered genetic factors. METHODS: We developed endometrial cancer risk prediction models using data on postmenopausal White women aged 45-85 years from 19 case-control studies in the Epidemiology of Endometrial Cancer Consortium (E2C2). Relative risk estimates for predictors were combined with age-specific endometrial cancer incidence rates and estimates for the underlying risk factor distribution. We externally validated the models in 3 cohorts: Nurses’ Health Study (NHS), NHS II, and the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. RESULTS: Area under the receiver operating characteristic curves for the epidemiologic model ranged from 0.64 (95% confidence interval [CI] = 0.62 to 0.67) to 0.69 (95% CI = 0.66 to 0.72). Improvements in discrimination from the addition of genetic factors were modest (no change in area under the receiver operating characteristic curves in NHS; PLCO = 0.64 to 0.66). The epidemiologic model was well calibrated in NHS II (overall expected-to-observed ratio [E/O] = 1.09, 95% CI = 0.98 to 1.22) and PLCO (overall E/O = 1.04, 95% CI = 0.95 to 1.13) but poorly calibrated in NHS (overall E/O = 0.55, 95% CI = 0.51 to 0.59). CONCLUSIONS: Using data from the largest, most heterogeneous study population to date (to our knowledge), prediction models based on epidemiologic factors alone successfully identified women at high risk of endometrial cancer. Genetic factors offered limited improvements in discrimination. Further work is needed to refine this tool for clinical or public health practice and expand these models to multiethnic populations. Oxford University Press 2023-01-23 /pmc/articles/PMC10165481/ /pubmed/36688725 http://dx.doi.org/10.1093/jnci/djad014 Text en © The Author(s) 2023. Published by Oxford University Press. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Article Shi, Joy Kraft, Peter Rosner, Bernard A Benavente, Yolanda Black, Amanda Brinton, Louise A Chen, Chu Clarke, Megan A Cook, Linda S Costas, Laura Dal Maso, Luigino Freudenheim, Jo L Frias-Gomez, Jon Friedenreich, Christine M Garcia-Closas, Montserrat Goodman, Marc T Johnson, Lisa La Vecchia, Carlo Levi, Fabio Lissowska, Jolanta Lu, Lingeng McCann, Susan E Moysich, Kirsten B Negri, Eva O'Connell, Kelli Parazzini, Fabio Petruzella, Stacey Polesel, Jerry Ponte, Jeanette Rebbeck, Timothy R Reynolds, Peggy Ricceri, Fulvio Risch, Harvey A Sacerdote, Carlotta Setiawan, Veronica W Shu, Xiao-Ou Spurdle, Amanda B Trabert, Britton Webb, Penelope M Wentzensen, Nicolas Wilkens, Lynne R Xu, Wang Hong Yang, Hannah P Yu, Herbert Du, Mengmeng De Vivo, Immaculata Risk prediction models for endometrial cancer: development and validation in an international consortium |
title | Risk prediction models for endometrial cancer: development and validation in an international consortium |
title_full | Risk prediction models for endometrial cancer: development and validation in an international consortium |
title_fullStr | Risk prediction models for endometrial cancer: development and validation in an international consortium |
title_full_unstemmed | Risk prediction models for endometrial cancer: development and validation in an international consortium |
title_short | Risk prediction models for endometrial cancer: development and validation in an international consortium |
title_sort | risk prediction models for endometrial cancer: development and validation in an international consortium |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10165481/ https://www.ncbi.nlm.nih.gov/pubmed/36688725 http://dx.doi.org/10.1093/jnci/djad014 |
work_keys_str_mv | AT shijoy riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium AT kraftpeter riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium AT rosnerbernarda riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium AT benaventeyolanda riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium AT blackamanda riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium AT brintonlouisea riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium AT chenchu riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium AT clarkemegana riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium AT cooklindas riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium AT costaslaura riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium AT dalmasoluigino riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium AT freudenheimjol riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium AT friasgomezjon riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium AT friedenreichchristinem riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium AT garciaclosasmontserrat riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium AT goodmanmarct riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium AT johnsonlisa riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium AT lavecchiacarlo riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium AT levifabio riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium AT lissowskajolanta riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium AT lulingeng riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium AT mccannsusane riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium AT moysichkirstenb riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium AT negrieva riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium AT oconnellkelli riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium AT parazzinifabio riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium AT petruzellastacey riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium AT poleseljerry riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium AT pontejeanette riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium AT rebbecktimothyr riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium AT reynoldspeggy riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium AT riccerifulvio riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium AT rischharveya riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium AT sacerdotecarlotta riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium AT setiawanveronicaw riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium AT shuxiaoou riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium AT spurdleamandab riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium AT trabertbritton riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium AT webbpenelopem riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium AT wentzensennicolas riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium AT wilkenslynner riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium AT xuwanghong riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium AT yanghannahp riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium AT yuherbert riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium AT dumengmeng riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium AT devivoimmaculata riskpredictionmodelsforendometrialcancerdevelopmentandvalidationinaninternationalconsortium |