Cargando…
Deep learning-based weld defect classification using VGG16 transfer learning adaptive fine-tuning
Welding is a vital joining process; however, occurrences of weld defects often degrade the quality of the welded part. The risk of occurrence of a variety of defects has led to the development of advanced weld defects detection systems such as automated weld defects detection and classification. The...
Autores principales: | Kumaresan, Samuel, Aultrin, K. S. Jai, Kumar, S. S., Anand, M. Dev |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Paris
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10165579/ http://dx.doi.org/10.1007/s12008-023-01327-3 |
Ejemplares similares
-
Transfer learning for image classification using VGG19: Caltech-101 image data set
por: Bansal, Monika, et al.
Publicado: (2021) -
Construction of VGG16 Convolution Neural Network (VGG16_CNN) Classifier with NestNet-Based Segmentation Paradigm for Brain Metastasis Classification
por: Alshammari, Abdulaziz
Publicado: (2022) -
A Fine-Tuned BERT-Based Transfer Learning Approach for Text Classification
por: Qasim, Rukhma, et al.
Publicado: (2022) -
Disease Classification in Eggplant Using Pre-trained VGG16 and MSVM
por: Krishnaswamy Rangarajan, Aravind, et al.
Publicado: (2020) -
A novel method for peanut variety identification and classification by Improved VGG16
por: Yang, Haoyan, et al.
Publicado: (2021)