Cargando…
COVID-19 multiwaves as multiphase percolation: a general N-sigmoidal equation to model the spread
ABSTRACT: The aim of the current study is to investigate the spread of the COVID-19 pandemic as a multiphase percolation process. Mathematical equations have been developed to describe the time dependence of the number of cumulative infected individuals, [Formula: see text] , and the velocity of the...
Autores principales: | El Aferni, Ahmed, Guettari, Moez, Hamdouni, Abdelkader |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10165586/ https://www.ncbi.nlm.nih.gov/pubmed/37192840 http://dx.doi.org/10.1140/epjp/s13360-023-04014-0 |
Ejemplares similares
-
Mathematical model of Boltzmann’s sigmoidal equation applicable to the spreading of the coronavirus (Covid-19) waves
por: El Aferni, Ahmed, et al.
Publicado: (2020) -
Coronaviruses disinfection of a mobile object by a germicidal UVC lamp
por: Guettari, Moez
Publicado: (2022) -
Chaos, percolation and the coronavirus spread: a two-step model
por: Zheng, Hua, et al.
Publicado: (2020) -
Stochastic formulation of multiwave pandemic: decomposition of growth into inherent susceptibility and external infectivity distributions
por: Mukherjee, Saumyak, et al.
Publicado: (2021) -
In situ observation of the percolation threshold in multiphase magma analogues
por: Colombier, M., et al.
Publicado: (2020)