Cargando…
Machine Learning Models Capture Plasmon Dynamics in Ag Nanoparticles
[Image: see text] Highly energetic electron–hole pairs (hot carriers) formed from plasmon decay in metallic nanostructures promise sustainable pathways for energy-harvesting devices. However, efficient collection before thermalization remains an obstacle for realization of their full energy generati...
Autores principales: | Habib, Adela, Lubbers, Nicholas, Tretiak, Sergei, Nebgen, Benjamin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10165650/ https://www.ncbi.nlm.nih.gov/pubmed/37078657 http://dx.doi.org/10.1021/acs.jpca.2c08757 |
Ejemplares similares
-
Deep learning of dynamically responsive chemical Hamiltonians with semiempirical quantum mechanics
por: Zhou, Guoqing, et al.
Publicado: (2022) -
Predicting phosphorescence energies and inferring wavefunction localization with machine learning
por: Sifain, Andrew E., et al.
Publicado: (2021) -
Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning
por: Smith, Justin S., et al.
Publicado: (2019) -
The ANI-1ccx and ANI-1x data sets, coupled-cluster and density functional theory properties for molecules
por: Smith, Justin S., et al.
Publicado: (2020) -
Molecular dynamics study of plasmon-mediated chemical transformations
por: Wu, Xiaoyan, et al.
Publicado: (2023)