Cargando…
Mining Trends of COVID-19 Vaccine Beliefs on Twitter With Lexical Embeddings: Longitudinal Observational Study
BACKGROUND: Social media plays a pivotal role in disseminating news globally and acts as a platform for people to express their opinions on various topics. A wide variety of views accompany COVID-19 vaccination drives across the globe, often colored by emotions that change along with rising cases, a...
Autores principales: | Chopra, Harshita, Vashishtha, Aniket, Pal, Ridam, Tyagi, Ananya, Sethi, Tavpritesh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10165720/ https://www.ncbi.nlm.nih.gov/pubmed/37192952 http://dx.doi.org/10.2196/34315 |
Ejemplares similares
-
Predicting Emerging Themes in Rapidly Expanding COVID-19 Literature With Unsupervised Word Embeddings and Machine Learning: Evidence-Based Study
por: Pal, Ridam, et al.
Publicado: (2022) -
Genomic Surveillance of COVID-19 Variants With Language Models and Machine Learning
por: Nagpal, Sargun, et al.
Publicado: (2022) -
VacSIM: Learning effective strategies for COVID-19 vaccine distribution using reinforcement learning
por: Awasthi, Raghav, et al.
Publicado: (2022) -
Mapping Lexical Dialect Variation in British English Using Twitter
por: Grieve, Jack, et al.
Publicado: (2019) -
Twitter trends in #Parasitology determined by text mining and topic modelling
por: Ellis, John T., et al.
Publicado: (2023)