Cargando…

Spatio-temporal patterning of extensile active stresses in microtubule-based active fluids

Microtubule-based active fluids exhibit turbulent-like autonomous flows, which are driven by the molecular motor powered motion of filamentous constituents. Controlling active stresses in space and time is an essential prerequisite for controlling the intrinsically chaotic dynamics of extensile acti...

Descripción completa

Detalles Bibliográficos
Autores principales: Lemma, Linnea M, Varghese, Minu, Ross, Tyler D, Thomson, Matt, Baskaran, Aparna, Dogic, Zvonimir
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10165807/
https://www.ncbi.nlm.nih.gov/pubmed/37168671
http://dx.doi.org/10.1093/pnasnexus/pgad130
_version_ 1785038320892379136
author Lemma, Linnea M
Varghese, Minu
Ross, Tyler D
Thomson, Matt
Baskaran, Aparna
Dogic, Zvonimir
author_facet Lemma, Linnea M
Varghese, Minu
Ross, Tyler D
Thomson, Matt
Baskaran, Aparna
Dogic, Zvonimir
author_sort Lemma, Linnea M
collection PubMed
description Microtubule-based active fluids exhibit turbulent-like autonomous flows, which are driven by the molecular motor powered motion of filamentous constituents. Controlling active stresses in space and time is an essential prerequisite for controlling the intrinsically chaotic dynamics of extensile active fluids. We design single-headed kinesin molecular motors that exhibit optically enhanced clustering and thus enable precise and repeatable spatial and temporal control of extensile active stresses. Such motors enable rapid, reversible switching between flowing and quiescent states. In turn, spatio-temporal patterning of the active stress controls the evolution of the ubiquitous bend instability of extensile active fluids and determines its critical length dependence. Combining optically controlled clusters with conventional kinesin motors enables one-time switching from contractile to extensile active stresses. These results open a path towards real-time control of the autonomous flows generated by active fluids.
format Online
Article
Text
id pubmed-10165807
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-101658072023-05-09 Spatio-temporal patterning of extensile active stresses in microtubule-based active fluids Lemma, Linnea M Varghese, Minu Ross, Tyler D Thomson, Matt Baskaran, Aparna Dogic, Zvonimir PNAS Nexus Physical Sciences and Engineering Microtubule-based active fluids exhibit turbulent-like autonomous flows, which are driven by the molecular motor powered motion of filamentous constituents. Controlling active stresses in space and time is an essential prerequisite for controlling the intrinsically chaotic dynamics of extensile active fluids. We design single-headed kinesin molecular motors that exhibit optically enhanced clustering and thus enable precise and repeatable spatial and temporal control of extensile active stresses. Such motors enable rapid, reversible switching between flowing and quiescent states. In turn, spatio-temporal patterning of the active stress controls the evolution of the ubiquitous bend instability of extensile active fluids and determines its critical length dependence. Combining optically controlled clusters with conventional kinesin motors enables one-time switching from contractile to extensile active stresses. These results open a path towards real-time control of the autonomous flows generated by active fluids. Oxford University Press 2023-04-12 /pmc/articles/PMC10165807/ /pubmed/37168671 http://dx.doi.org/10.1093/pnasnexus/pgad130 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of National Academy of Sciences. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Physical Sciences and Engineering
Lemma, Linnea M
Varghese, Minu
Ross, Tyler D
Thomson, Matt
Baskaran, Aparna
Dogic, Zvonimir
Spatio-temporal patterning of extensile active stresses in microtubule-based active fluids
title Spatio-temporal patterning of extensile active stresses in microtubule-based active fluids
title_full Spatio-temporal patterning of extensile active stresses in microtubule-based active fluids
title_fullStr Spatio-temporal patterning of extensile active stresses in microtubule-based active fluids
title_full_unstemmed Spatio-temporal patterning of extensile active stresses in microtubule-based active fluids
title_short Spatio-temporal patterning of extensile active stresses in microtubule-based active fluids
title_sort spatio-temporal patterning of extensile active stresses in microtubule-based active fluids
topic Physical Sciences and Engineering
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10165807/
https://www.ncbi.nlm.nih.gov/pubmed/37168671
http://dx.doi.org/10.1093/pnasnexus/pgad130
work_keys_str_mv AT lemmalinneam spatiotemporalpatterningofextensileactivestressesinmicrotubulebasedactivefluids
AT vargheseminu spatiotemporalpatterningofextensileactivestressesinmicrotubulebasedactivefluids
AT rosstylerd spatiotemporalpatterningofextensileactivestressesinmicrotubulebasedactivefluids
AT thomsonmatt spatiotemporalpatterningofextensileactivestressesinmicrotubulebasedactivefluids
AT baskaranaparna spatiotemporalpatterningofextensileactivestressesinmicrotubulebasedactivefluids
AT dogiczvonimir spatiotemporalpatterningofextensileactivestressesinmicrotubulebasedactivefluids