Cargando…
Neural network and spline-based regression for the prediction of salivary hypofunction in patients undergoing radiation therapy
BACKGROUND: This study leverages a large retrospective cohort of head and neck cancer patients in order to develop machine learning models to predict radiation induced hyposalivation from dose-volume histograms of the parotid glands. METHODS: The pre and post-radiotherapy salivary flow rates of 510...
Autores principales: | Smith, Derek K., Clark, Haley, Hovan, Allan, Wu, Jonn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10165827/ https://www.ncbi.nlm.nih.gov/pubmed/37158946 http://dx.doi.org/10.1186/s13014-023-02274-9 |
Ejemplares similares
-
Efficient spline regression for neural spiking data
por: Sarmashghi, Mehrad, et al.
Publicado: (2021) -
Application of regenerative medicine to salivary gland hypofunction
por: Tanaka, Junichi, et al.
Publicado: (2021) -
Spline smoothing and nonparametric regression /
por: Eubank, Randall L., 1952-
Publicado: (1988) -
Immunomodulatory Macrophages Enable E-MNC Therapy for Radiation-Induced Salivary Gland Hypofunction
por: Honma, Ryo, et al.
Publicado: (2023) -
Late responses to adenoviral-mediated transfer of the aquaporin-1 gene for radiation-induced salivary hypofunction
por: Alevizos, Ilias, et al.
Publicado: (2016)