Cargando…
Evaluation of stacked ensemble model performance to predict clinical outcomes: A COVID-19 study
BACKGROUND: The application of machine learning (ML) to analyze clinical data with the goal to predict patient outcomes has garnered increasing attention. Ensemble learning has been used in conjunction with ML to improve predictive performance. Although stacked generalization (stacking), a type of h...
Autores principales: | Kablan, Rianne, Miller, Hunter A., Suliman, Sally, Frieboes, Hermann B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10165871/ https://www.ncbi.nlm.nih.gov/pubmed/37172507 http://dx.doi.org/10.1016/j.ijmedinf.2023.105090 |
Ejemplares similares
-
An Empirical Model to Predict the Diabetic Positive Using Stacked Ensemble Approach
por: R., Sivashankari, et al.
Publicado: (2022) -
RISK OF CARDIOVASCULAR COMPLICATIONS IN ETHNIC MINORITIES INFECTED WITH COVID-19 - EXPERIENCE IN A MID-SIZED MIDWESTERN CITY
por: Desai, Viral, et al.
Publicado: (2021) -
Mortality prediction in ICU Using a Stacked Ensemble Model
por: Ren, Na, et al.
Publicado: (2022) -
A Stacking Ensemble Learning Framework for Genomic Prediction
por: Liang, Mang, et al.
Publicado: (2021) -
StackBRAF: A Large-Scale Stacking Ensemble Learning
for BRAF Affinity Prediction
por: Syahid, Nur Fadhilah, et al.
Publicado: (2023)