Cargando…

Characterization of 250 MeV Protons from the Varian ProBeam PBS System for FLASH Radiation Therapy

Shoot-through proton FLASH radiation therapy has been proposed where the highest energy is extracted from a cyclotron to maximize the dose rate (DR). Although our proton pencil beam scanning system can deliver 250 MeV (the highest energy), this energy is not used clinically, and as such, 250 MeV has...

Descripción completa

Detalles Bibliográficos
Autores principales: Charyyev, Serdar, Chang, Chih-Wei, Zhu, Mingyao, Lin, Liyong, Langen, Katja, Dhabaan, Anees
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Particle Therapy Co-operative Group 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10166018/
https://www.ncbi.nlm.nih.gov/pubmed/37169007
http://dx.doi.org/10.14338/IJPT-22-00027.1
_version_ 1785038358911647744
author Charyyev, Serdar
Chang, Chih-Wei
Zhu, Mingyao
Lin, Liyong
Langen, Katja
Dhabaan, Anees
author_facet Charyyev, Serdar
Chang, Chih-Wei
Zhu, Mingyao
Lin, Liyong
Langen, Katja
Dhabaan, Anees
author_sort Charyyev, Serdar
collection PubMed
description Shoot-through proton FLASH radiation therapy has been proposed where the highest energy is extracted from a cyclotron to maximize the dose rate (DR). Although our proton pencil beam scanning system can deliver 250 MeV (the highest energy), this energy is not used clinically, and as such, 250 MeV has yet to be characterized during clinical commissioning. We aim to characterize the 250-MeV proton beam from the Varian ProBeam system for FLASH and assess the usability of the clinical monitoring ionization chamber (MIC) for FLASH use. We measured the following data for beam commissioning: integral depth dose curve, spot sigma, and absolute dose. To evaluate the MIC, we measured output as a function of beam current. To characterize a 250 MeV FLASH beam, we measured (1) the central axis DR as a function of current and spot spacing and arrangement, (2) for a fixed spot spacing, the maximum field size that achieves FLASH DR (ie, > 40 Gy/s), and (3) DR reproducibility. All FLASH DR measurements were performed using an ion chamber for the absolute dose, and irradiation times were obtained from log files. We verified dose measurements using EBT-XD films and irradiation times using a fast, pixelated spectral detector. R90 and R80 from integral depth dose were 37.58 and 37.69 cm, and spot sigma at the isocenter were σ(x) = 3.336 and σ(y) = 3.332 mm, respectively. The absolute dose output was measured as 0.343 Gy*mm(2)/MU for the commissioning conditions. Output was stable for beam currents up to 15 nA and gradually increased to 12-fold for 115 nA. Dose and DR depended on beam current, spot spacing, and arrangement and could be reproduced with 6.4% and 4.2% variations, respectively. Although FLASH was achieved and the largest field size that delivers FLASH DR was determined as 35 × 35 mm(2), the current MIC has DR dependence, and users should measure dose and DR independently each time for their FLASH applications.
format Online
Article
Text
id pubmed-10166018
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher The Particle Therapy Co-operative Group
record_format MEDLINE/PubMed
spelling pubmed-101660182023-05-09 Characterization of 250 MeV Protons from the Varian ProBeam PBS System for FLASH Radiation Therapy Charyyev, Serdar Chang, Chih-Wei Zhu, Mingyao Lin, Liyong Langen, Katja Dhabaan, Anees Int J Part Ther Original Articles Shoot-through proton FLASH radiation therapy has been proposed where the highest energy is extracted from a cyclotron to maximize the dose rate (DR). Although our proton pencil beam scanning system can deliver 250 MeV (the highest energy), this energy is not used clinically, and as such, 250 MeV has yet to be characterized during clinical commissioning. We aim to characterize the 250-MeV proton beam from the Varian ProBeam system for FLASH and assess the usability of the clinical monitoring ionization chamber (MIC) for FLASH use. We measured the following data for beam commissioning: integral depth dose curve, spot sigma, and absolute dose. To evaluate the MIC, we measured output as a function of beam current. To characterize a 250 MeV FLASH beam, we measured (1) the central axis DR as a function of current and spot spacing and arrangement, (2) for a fixed spot spacing, the maximum field size that achieves FLASH DR (ie, > 40 Gy/s), and (3) DR reproducibility. All FLASH DR measurements were performed using an ion chamber for the absolute dose, and irradiation times were obtained from log files. We verified dose measurements using EBT-XD films and irradiation times using a fast, pixelated spectral detector. R90 and R80 from integral depth dose were 37.58 and 37.69 cm, and spot sigma at the isocenter were σ(x) = 3.336 and σ(y) = 3.332 mm, respectively. The absolute dose output was measured as 0.343 Gy*mm(2)/MU for the commissioning conditions. Output was stable for beam currents up to 15 nA and gradually increased to 12-fold for 115 nA. Dose and DR depended on beam current, spot spacing, and arrangement and could be reproduced with 6.4% and 4.2% variations, respectively. Although FLASH was achieved and the largest field size that delivers FLASH DR was determined as 35 × 35 mm(2), the current MIC has DR dependence, and users should measure dose and DR independently each time for their FLASH applications. The Particle Therapy Co-operative Group 2023-03-03 /pmc/articles/PMC10166018/ /pubmed/37169007 http://dx.doi.org/10.14338/IJPT-22-00027.1 Text en ©Copyright 2023 The Author(s) https://creativecommons.org/licenses/by/3.0/This is an Open Access article distributed in accordance with Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/ (https://creativecommons.org/licenses/by/3.0/) ).
spellingShingle Original Articles
Charyyev, Serdar
Chang, Chih-Wei
Zhu, Mingyao
Lin, Liyong
Langen, Katja
Dhabaan, Anees
Characterization of 250 MeV Protons from the Varian ProBeam PBS System for FLASH Radiation Therapy
title Characterization of 250 MeV Protons from the Varian ProBeam PBS System for FLASH Radiation Therapy
title_full Characterization of 250 MeV Protons from the Varian ProBeam PBS System for FLASH Radiation Therapy
title_fullStr Characterization of 250 MeV Protons from the Varian ProBeam PBS System for FLASH Radiation Therapy
title_full_unstemmed Characterization of 250 MeV Protons from the Varian ProBeam PBS System for FLASH Radiation Therapy
title_short Characterization of 250 MeV Protons from the Varian ProBeam PBS System for FLASH Radiation Therapy
title_sort characterization of 250 mev protons from the varian probeam pbs system for flash radiation therapy
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10166018/
https://www.ncbi.nlm.nih.gov/pubmed/37169007
http://dx.doi.org/10.14338/IJPT-22-00027.1
work_keys_str_mv AT charyyevserdar characterizationof250mevprotonsfromthevarianprobeampbssystemforflashradiationtherapy
AT changchihwei characterizationof250mevprotonsfromthevarianprobeampbssystemforflashradiationtherapy
AT zhumingyao characterizationof250mevprotonsfromthevarianprobeampbssystemforflashradiationtherapy
AT linliyong characterizationof250mevprotonsfromthevarianprobeampbssystemforflashradiationtherapy
AT langenkatja characterizationof250mevprotonsfromthevarianprobeampbssystemforflashradiationtherapy
AT dhabaananees characterizationof250mevprotonsfromthevarianprobeampbssystemforflashradiationtherapy