Cargando…
CoVnita, an end-to-end privacy-preserving framework for SARS-CoV-2 classification
Classification of viral strains is essential in monitoring and managing the COVID-19 pandemic, but patient privacy and data security concerns often limit the extent of the open sharing of full viral genome sequencing data. We propose a framework called CoVnita, that supports private training of a cl...
Autores principales: | Sim, Jun Jie, Zhou, Weizhuang, Chan, Fook Mun, Annamalai, Meenatchi Sundaram Muthu Selva, Deng, Xiaoxia, Tan, Benjamin Hong Meng, Aung, Khin Mi Mi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10166033/ https://www.ncbi.nlm.nih.gov/pubmed/37156790 http://dx.doi.org/10.1038/s41598-023-34535-8 |
Ejemplares similares
-
Achieving GWAS with homomorphic encryption
por: Sim, Jun Jie, et al.
Publicado: (2020) -
The End of Genetic Privacy in the Blade Runner Canon
por: Oliver, Kendra H., et al.
Publicado: (2021) -
Intelligent Privacy Protection of End User in Long Distance Education
por: Li, Yating, et al.
Publicado: (2022) -
Isolation and Characterization of an Acyclic Isoprenoid from Semecarpus anacardium Linn. and its Antibacterial Potential in vitro: - Antimicrobial Activity of Semecarpus anacardium Linn. Seeds -
por: Purushothaman, Ayyakkannu, et al.
Publicado: (2017) -
Privacy preserving data visualizations
por: Avraam, Demetris, et al.
Publicado: (2021)