Cargando…
Artificial intelligence in diabetic retinopathy screening: clinical assessment using handheld fundus camera in a real-life setting
AIM: Diabetic retinopathy (DR) represents the main cause of vision loss among working age people. A prompt screening of this condition may prevent its worst complications. This study aims to validate the in-built artificial intelligence (AI) algorithm Selena+ of a handheld fundus camera (Optomed Aur...
Autores principales: | Lupidi, Marco, Danieli, Luca, Fruttini, Daniela, Nicolai, Michele, Lassandro, Nicola, Chhablani, Jay, Mariotti, Cesare |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Milan
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10166040/ https://www.ncbi.nlm.nih.gov/pubmed/37154944 http://dx.doi.org/10.1007/s00592-023-02104-0 |
Ejemplares similares
-
Handheld Fundus Camera for Diabetic Retinopathy Screening: A Comparison Study with Table-Top Fundus Camera in Real-Life Setting
por: Midena, Edoardo, et al.
Publicado: (2022) -
Quantitative and Qualitative Assessments of Retinal Structure with Variable A-Scan Rate Spectralis OCT: Insights into IPL Multilaminarity
por: Lupidi, Marco, et al.
Publicado: (2023) -
Screening for Diabetic Retinopathy in Endocrinology Clinics by Using Handheld Cameras and Applying Artificial Intelligence Algorithms
por: Dvey-Aharon, Zack, et al.
Publicado: (2021) -
Feasibility and clinical utility of handheld fundus cameras for retinal imaging
por: Das, Susmit, et al.
Publicado: (2022) -
Use of offline artificial intelligence in a smartphone-based fundus camera for community screening of diabetic retinopathy
por: Jain, Astha, et al.
Publicado: (2021)