Cargando…
Rescue of Long-Term Spatial Memory by 7,8-Dihydroxyflavone in Mice with Reduced Oligodendrogenesis
Oligodendrogenesis is the process by which new oligodendrocytes are produced in the CNS. Oligodendrocytes form myelin, which has a vital role in neural signal transmission and integration. Here we tested mice with reduced adult oligodendrogenesis in the Morris water maze, a test of spatial learning....
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society for Neuroscience
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10166125/ https://www.ncbi.nlm.nih.gov/pubmed/37094937 http://dx.doi.org/10.1523/ENEURO.0498-22.2023 |
Sumario: | Oligodendrogenesis is the process by which new oligodendrocytes are produced in the CNS. Oligodendrocytes form myelin, which has a vital role in neural signal transmission and integration. Here we tested mice with reduced adult oligodendrogenesis in the Morris water maze, a test of spatial learning. These mice were found to have impaired long-term (28 d) spatial memory. However, when 7,8-dihydroxyflavone (7,8-DHF) was administered immediately after each training session, their long-term spatial memory impairment was rescued. An increase in the number of newly formed oligodendrocytes in the corpus callosum was also observed. 7,8-DHF has previously been shown to improve spatial memory in animal models of Alzheimer’s disease, post-traumatic stress disorder, Wolfram syndrome and Down syndrome, as well as in normal aging. Understanding the underlying mechanisms of the effect of this drug on spatial memory is therefore helpful in assessing it for clinical relevance and development. |
---|