Cargando…

Development of Machine Learning Algorithms Incorporating Electronic Health Record Data, Patient-Reported Outcomes, or Both to Predict Mortality for Outpatients With Cancer

Machine learning (ML) algorithms that incorporate routinely collected patient-reported outcomes (PROs) alongside electronic health record (EHR) variables may improve prediction of short-term mortality and facilitate earlier supportive and palliative care for patients with cancer. METHODS: We trained...

Descripción completa

Detalles Bibliográficos
Autores principales: Parikh, Ravi B., Hasler, Jill S., Zhang, Yichen, Liu, Manqing, Chivers, Corey, Ferrell, William, Gabriel, Peter E., Lerman, Caryn, Bekelman, Justin E., Chen, Jinbo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer Health 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10166444/
https://www.ncbi.nlm.nih.gov/pubmed/36480775
http://dx.doi.org/10.1200/CCI.22.00073
Descripción
Sumario:Machine learning (ML) algorithms that incorporate routinely collected patient-reported outcomes (PROs) alongside electronic health record (EHR) variables may improve prediction of short-term mortality and facilitate earlier supportive and palliative care for patients with cancer. METHODS: We trained and validated two-phase ML algorithms that incorporated standard PRO assessments alongside approximately 200 routinely collected EHR variables, among patients with medical oncology encounters at a tertiary academic oncology and a community oncology practice. RESULTS: Among 12,350 patients, 5,870 (47.5%) completed PRO assessments. Compared with EHR- and PRO-only algorithms, the EHR + PRO model improved predictive performance in both tertiary oncology (EHR + PRO v EHR v PRO: area under the curve [AUC] 0.86 [0.85-0.87] v 0.82 [0.81-0.83] v 0.74 [0.74-0.74]) and community oncology (area under the curve 0.89 [0.88-0.90] v 0.86 [0.85-0.88] v 0.77 [0.76-0.79]) practices. CONCLUSION: Routinely collected PROs contain added prognostic information not captured by an EHR-based ML mortality risk algorithm. Augmenting an EHR-based algorithm with PROs resulted in a more accurate and clinically relevant model, which can facilitate earlier and targeted supportive care for patients with cancer.