Cargando…

EndophilinA-dependent coupling between activity-induced calcium influx and synaptic autophagy is disrupted by a Parkinson-risk mutation

Neuronal activity causes use-dependent decline in protein function. However, it is unclear how this is coupled to local quality control mechanisms. We show in Drosophila that the endocytic protein Endophilin-A (EndoA) connects activity-induced calcium influx to synaptic autophagy and neuronal surviv...

Descripción completa

Detalles Bibliográficos
Autores principales: Bademosi, Adekunle T., Decet, Marianna, Kuenen, Sabine, Calatayud, Carles, Swerts, Jef, Gallego, Sandra F., Schoovaerts, Nils, Karamanou, Spyridoula, Louros, Nikolaos, Martin, Ella, Sibarita, Jean-Baptiste, Vints, Katlijn, Gounko, Natalia V., Meunier, Frédéric A., Economou, Anastassios, Versées, Wim, Rousseau, Frederic, Schymkowitz, Joost, Soukup, Sandra-F., Verstreken, Patrik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10166451/
https://www.ncbi.nlm.nih.gov/pubmed/36827984
http://dx.doi.org/10.1016/j.neuron.2023.02.001
Descripción
Sumario:Neuronal activity causes use-dependent decline in protein function. However, it is unclear how this is coupled to local quality control mechanisms. We show in Drosophila that the endocytic protein Endophilin-A (EndoA) connects activity-induced calcium influx to synaptic autophagy and neuronal survival in a Parkinson disease-relevant fashion. Mutations in the disordered loop, including a Parkinson disease-risk mutation, render EndoA insensitive to neuronal stimulation and affect protein dynamics: when EndoA is more flexible, its mobility in membrane nanodomains increases, making it available for autophagosome formation. Conversely, when EndoA is more rigid, its mobility reduces, blocking stimulation-induced autophagy. Balanced stimulation-induced autophagy is required for dopagminergic neuron survival, and a variant in the human ENDOA1 disordered loop conferring risk to Parkinson disease also blocks nanodomain protein mobility and autophagy both in vivo and in human-induced dopaminergic neurons. Thus, we reveal a mechanism that neurons use to connect neuronal activity to local autophagy and that is critical for neuronal survival.